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INTRODUCTON .

CSE Studies in/fgggjidequacy focused on two theoretical prdblems

~

during FY1981: 1) procedures for estimating reliability and 2) improved
fgéhniques'for identifying ineffectiVe'ﬁfstractors. Applications of these

\
techniques were also to be demonstrated in the analysis of multiple choice

<

¢ tests. As any psychometrician will agree,’thé areas of reliability and

identifying distractors are intimately related. Progress on one area-is\ .
Yikely to influence ‘thought on tpe other. ‘Although, for the pprposes‘of
this;réport, the progress of research is divided into two discrete ééction;,
in fact, selected p;pers integrété‘find{ngs in the two areas._ In the
August, 1980 plan for the Test Design P;ojeét, it was proposed thét these
analyses consider data. from the study of "Literacy Assessment in a §chool‘
District Context." cheverg at the request of the NIE, the ]atter study
was deleted from CSE's scope of work; as a resu]i, empirical aﬁalyses
trying out newly proposed solutions used available data. |

"Work in Studies of Test Adequacy proceeded faster than antjcipafed. ,
Initial soiutions required 1ittlé\;2vision, and an 1mportan§‘new technique

Y £l

proved very valuable in address?ng several ‘test adequacy prob]ems{ As a

‘ S ..
result, more work than anticipated was completed, and an additiona1'aspEct
of reliapility, test length, was.also addressed, although not required by

the scope of work. ) <
4 b 4

A

The accomplishments for the year are briefly descrdibed be]owi inc]hding
work directly related tp each problem area and the extension of the developed

solutions to other contfxts.

[}

\ :
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'Note on Methodology o .

- (3

The methodology used in testing the solutions in the problem areas of

_reT1ab111ty and identifying distractérs is a mathematical one. In general,
it depends upon the.positing of a "lemma", a mathematical statehenf presumed
to solve a given prqb1em, and then testing mathematieally the quality of fhe

o-so]ution. In the text of this report, as the 6?ocess of exploring potential
éo]utiohs is-traced, advantages" and "limitations"” are noted but not fully
described. These terms are used in thé mathematical sense and are not matters
of personai preference. Advantages (or limitations) of potential solutions
are demonstrated mathematically An the coordinate, referehced research papers

.

“prepared in this project and are‘obvious by inspection of the equations.

- The estimation of re11ab111ty

. } The problem with estimating the rehabﬂ1ty of tests is that the usual
and customary estimation procedures either ignore the problem of guessing

altogether or make clearly inappropriate assumptions about how guessing

affects the data. One freqﬁéhy assumption is that guessing is completely

random. At the beginniéf,of the year it seemed that existing latent structure

models might provide a 'solution to the guessing issue. However, the obvious

problem with this §91uti'h is that the required model deamnds mathematical

€ Treqqently impossible to meet. Elaboration of this view
A’fehort entitled "Methods and Recent Advances on in Measuring
Achievem t was decideg, therefore, to search for another model, one ~

which would allow a solution to the guessing E”ssue within more. realistic
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ébnstraints. A first attgmpt in this'seargh is described in "An Extension
of the. Dirichlet-Multinomial Model that Allows True Score and Guessing to
be Correlated." The new model had theoretical advantages over existing
models, but there was no convincing evidence thé% it had any practical

P « 3
advantages, and after considerable review, it was abandoned.
1Y

The next attempt was based on an answer-until-correct scoring model.

This solution is described in ."Seme Empirical and Theoretical Results on
an Answer-Until-Correct Scoring Model™". Al] ?ndicatiogs are that this new

model substantially improves on existing procedures, both theorétjcal]y .
‘ - “"1-_4‘} »
and empirically. However, in.a very few instances, some of the items used

in the study seemed inconsistent with the assumptions befng made. Accordingly,
/

another empirical study was conducted to see whether an additional model -

-

would "explain" those remaining items. The resqlts of this study are contained
in "Some New Res&lts on an Answer-Until—Co&rect Scoring Procedure". At the same
time, it was also thought desirablé to develop a new reliability coefficient
that reflects the effectiveness of the distractors being used, as an attempt
to iptegrate the main substantive ayeas under review, The first step toward

this goal is described in "Using k out of n System Reliability to Study and

Characterize Tests". However, the reasonableness of certain requisite

P

assumptions was not uniformly stable, and so additional work wa§§§ndertaken

to find a way of improving this situation. A proceduré for ddingﬁthis is
) —~ .

R ;
shown in "Bounds on the k out of n Reliability of a Test, and.an E&act Test
. * N : A ; 3 )
for Random Guessing". -
In addition, a related concern of reliability is the matter of test \

length. Two projects previously funded by NIE include approaches to
. {




criterion-referenced tests, and_determining test length. Our new results
have important implications in both these .areas, which are described in
"Determining the Lkength of a Criterion- Referenced Test when an Answer-

12

Unt11 Correct Scoring -Procedure is Used", in "A Closed Sequent1a1 Procedure
for Comparing the\Bqnom1a1rD1str1but1on to a Standard" and in "A Closed
Sequential Procedure for Answer-Until- Correct Tests".

In this genera1 area Pof re11ab711ty, the problem of reliable selection
also occurs, that is, technnqués_fgr identifying the t best of k examinees,
An_existing procedure is usually. impractical because~itin4ght require too
. many items, a test length issue. A step toward solving this problem Jjs to
develop retrospect1ve methods, and some results on how thi's might be done
are described in "Approx1mat1ng the Probab111ty of Ident1fy1ng the- MGSt
Effeetlve Treatment for the Case of Normal Distributions Having Unknown

and Unequal Variances." Additional materials generated this year are: 7

.--A Cautionary Note on Est1mat1ng the Reliability of a
Mastery Test with the Beta Binomial- Model

--Methods and Recent Advances in Measur1ng Achievement ;

A Response to Molenaar
- 3

" Each of these pﬁpers is provided in the following pages. b

The identificaiion'of distractors

<

Probabilitiges with Respect to a Standard." 'However, this approach‘proved’to

be\nnsat's actory on several grounds, 'In particulap, it did not giye a direct
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. ’ . .
for this particular issue was to ana]yze how distractors behave in’ the

-~

context of the answer—upti—correct test format.” Two progedureé were
. proposed and>described. in "Solving Measurement Problems with an Answer-

Until-Correct Scoring Procedure." A problem that remained was determining
whether the(assumptions'made were reasonable. This was empirically S \\\\ .

investigated in "Some Empirical and Theoretical Resu]té on an Answer-Until-

Correct Scoring Procedure", and in "Some New Results on an Answer-Unti1-Correct .

Scoring Procedure.™ ~ ] e

' Né{%, it was deeméé important to consider how distractors might be
ana]yzed in terms of their relation to the n items on ajtest. This work
\\ wasjexélicated in "Using k out of'n_System Re]iap}lﬁty to Stuqy and : ‘\
Characterize Tests" and in "Bounds on the k out of ﬁ ReTiabi]ity’of a Test.

(Additional workyon’ distractors is described in "A Polarization Test for
Making Inferences About the Entropy of Muu]tiﬁﬁe-Choice Iésts"; and in
Analyzing the Distéactors of Multiple-Choice Test Items or Partitioning
L8 .

Multiromial‘ Cel] Probabilities with Respect to a Standard,

)
’
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ABSTRACT ' |

-

* Commenting on a paper I. pub]1shed in th1s journa] Wilcox, 1979a),

Molenaar (1981) has ra1sed some questions aboq; the usefulness and

.

feas1b111ty of measuring achievement with latent structure mode]s. In

.the last two.or'three years,‘cons1dera e progress has been made regard-“
1ng the issues mentioned by Mo]enaa}. The purpose of th1s note is to in- ,
d1cate the progress that has been made, to describe a1ternat1ve so]ut1ons
'that have been recently proposed, and td comment on some of Mo]enaar S

suggestions on how the model m1ght be 1mpr0ved
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| 1. INTRODUCTION - ;o

Commenting on a paper I published in this journal (Wilcox, 1979a),
Mé]![aar-(i§§l) has raised soae important issues related to measuring -
achievement with 1atent structure models -The purpose of Jhis note is to
briefly outl1ne wherewwe now stand ‘in regard to the concerns expressed
by Molenaar. Before doing so, let me.esta§l1sh some notation, and make

some opening remarks. " ( ’
“Suppose w:"’have a domain of skiyls ane a jﬂg_'l_(;_ examinee. Let ¢ be{

the proportion of sk1lls the examinee has acqu1reda Further suppose that
_every skill is represented by one or more items. Let B=Pr(correct response |

the examinee does not know) when the examinee answers an item corresponding

to a randomly sampled skill. Finally, let y be the joint probability ofi
. not knowing and being correct. Thus, y =B(i—;). ' ¢

The above model is based on what I ealﬂ Type II guessing. It is

important to realize that the latent strucdture models referenced in my

paper (wfleox, 1979, p. 62) are based on Type I guessing.” That {s,

guessing is defined in terms‘éf a single skill and a population of examinees.
The purpose of the first sectian‘of My paper was to show that_we can inter-

' g
E Y

change the role of items and examinees to estimate Type II guessing which

r

in turn’makes it possible to so1v€-tbe problems described in sectigns 2 '
and 3.

2. PAIRWISE EQUIVALENT ITEMS\’

‘The'f1rst issue ra1sed by Mole;aar‘is about ‘the notion of equivalent
items. Iwo 1tems that measure the same skill are said to be equivalent if an’

examinee knows both or neither one. Molenaar points out that equivalent jtems

-
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1. ) might exist in some instadees, b~ut. there are situations where the creation
#»0f equivalent 1'tem_s is difficult 6}» even jm,bos_sib]e: He- is,. of course,
" correct. ~ ‘ . ot )
h Two aspects of this prob]em need to be addressed. The first is to
1nd1cate Six ways we can emp1r1ca11_y check vhether two or more items are
., . equivalent. The second 1'? to briefly cOmment- on four alternative apprOaches .
to the prob]em of guessing. . o ’ K
The first and perhaps mgst obvious app,rouch to‘ehecki*né whether itelﬁ

are 'equivalent is to apply the usual ch‘i-square ‘goodness~of-f1't test to \ —
the latent structure mode] be1ng used. Macready and Da_yton (1977) ﬂlus— ‘
trate this for a model based on Type I guessmg and equwa]ent 1tems We
.note that a good fit to their data was obtamed '
Observe 4 though, that a peor fit does not necessarily 1mp1_y that 1tems
. are not equivalent. 'It m1ght mean that a more general model is needed
For exgmp'le we mi ght assume that Pr(1n<59rrect response: | examinee knows)>0
. (Macready and Da_yton, 1977). S ‘ . . -
The second approach is ta estimate an index that ;n'easures- equivalence
(Baker and Hubert, 1977). '
~ Another way to check whether, items are‘equivalent is td use [Tatent
partition analysis in the mammer proposed by Hartke (19%). ‘
The fourth solution is to first assume that one of the items is
‘ hierarchically re]ated'to the second. A test of this assumption is given
‘% | by White and Clark (1973). (See, also, Dayton and Macready, 1976.) If
the items are indeed equwa]ent one of the parameters in the resul tmg
. Tatent structure model, say §, Will be zero (Nﬂcox, 1980a). If we assumew

. . 8>0, a test of the hypothesis that 6=0 can be made by testing the equality

, of two cell probabilities in a 2x2 contingency table.. This can he done




v
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with McNemar's test. “Some results pn\&ge power of McNemar's test are given

in Wilcox (1977a). oot .

5 Qo

A fifth cheékkon the aséumption of equiV@ient item pairs tan be made

if B <%, then from Wilcox (1979a, p. 64) it follows that two cell proba-
b111t1es in a 2x2 cont1ngency tab]% must be less than or equal to %. One

way to check this assumption is descr1bed by Wilcox (in press, aj.

. Fipally, asSuming B <k q]sofﬁmp]ies that for a rapdom]y.sampled

pair of equivalent items, tHe probab?]ity of a cor?;:t-incorrect response
(and the probabﬂ]1ty of an 1ncorrect -cogrect response) is less than or
equal to the probab1]1ty of two’ 1ncorrect,responses This inequality is
easily ver1f1ed by again referr1ng tq Wilcox (1979a, p. 64{. Robertson

(1978) describes a test of this assumption.

Alternative Approaches to Guessiﬁg < '

PREEE

Suppose that empirical evidence does’ not support the assumption of

equivalent items or that we decide’apriori that equivalent items do not’

exist. In this case we have four alternative approaches to the problem

of guessing. The first is to u?elgompletion items. This ﬁight,eliminate
guessing, but erroré‘at the {ﬁéﬁ level might still exist (Harris et al.,
1980; Mac?ead&.and Dayton, 1Q77): Also, in many sitéations, scoring com-
pietion items is ecqnomical}y infeasible. ‘
If multiple-choice items ﬁust be used, the second alternative is to
assume guessing fs at rando;. L;fd and Novick (1958, p. 309) note that

this assumption can seldom be seriously entertained. Empirical investi-

gations on the usua]l correction-for-guessing formula score.suppori thii)

Al

_'1f we assume g is ‘bounded above by some constant ]eéf than 1. For example,

-

D TR
eSO
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. view (Cross and Frary, 1977; Bliss, 1980). He might assume guessing is at
random anyway, but’ th1s can haye serious consequences in terms of the design :
and accuracy of a test (Weitzman, 1970; w11cox, 1980b, 1980c) '

Another approach is to assume h1erarch1ca1}y related items are available.

:The resulting model includes equivalent 1tems as a spec1a1 case (e.g.,

Wilcox, 1980a) Dayton and Macready (1976) describe a general framework -

* for handling h1erarch1ca1]y related 1tems For an even more general
model, see Dayton and&Macready (1980). .

The fourth a]ternattve is to use an apswer-until-correct scoring
o : procedure proposed hy-witcox (1981f. (For a related scoring rule, see
Brown, 1965.) ‘Suppose multiple-choice test items are used with t alter-
. nat’ﬁes from which to choose ope of which is correct An examinee chooses
) a]taihat1ves unt11 the correct response is identified. hssume the exam~
. . inee can ehrmnate i d1s‘ractors from \cons1derat1on when the correct re-

& ¥ sponse is.not known, i=0, 1 »t-2. Following Horst (1933), we a]so assume

that the exam1nee guesses at random from among those distractors that are

not eliminated. For a specific examinee let P; be the probability of

cheosing the correct respon®s on the ith attempt of a randomly selected

item (i=1,...,t), and let Zs (3=Q,...,t-2) be the proportion of items

in the 1teh pqéi for which the examinee can e]tminate J dtstractors. The .

probability of a correct.on the first attempt is . -

t-2

py= g+ 5 gi/(t-d)

120" )
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. The model assumes , L ; :

adjacent-violators” algorithm (Barlow, et al., 1972, pp. 13-18). If p; and

" the-estimate is zero (Zehna, 1966).

“solve several other measurément problems (Nt]cox, 1981b, 1980e). Suppose,

SRR RN P 4242
. [N
R

<+

-

Py2py2 ... 2y SRR /(2.1)

which can be tested (Robertson, 1978}. When (2.1) is assumed, maximum

Tikelihood estimates of the pi's are easily obtained using the "pool-

5é are the usual sample mean estimates of Py and Pos. it follows that

a maximum 1ikelihood estimate of z is £=ﬁ1-62 if ﬁliﬁi’ and if 51<52,

In addition to correcting for pertial infdrmation, the model can
for example, we have-an n-item test, and that £ is the expected number 3f
items for wHich we correctly determine whether the typ1ca1 examinee knows
the correct response. Us1ng resu]ts in the eng1neer1ng Titerature on
system reliability" it is poss1b1e to make 1nferences about whether £ is
Yarge og small (Wilcox, 1980e). o S ’
Before concluding this section we make the important observation that la- —

tent structure modelssbased on the notion of equivalent items have been suc-

cessfu]iy applied to real data sets (Macre dy & Dayton, 1977 Harris & Pearlman:a,

1978) More recent]y, Professor C. W. Harris and his collegues made extensive
use bf these nnde]s to measure the arithmetic achievement of studepts in

‘ L]
various grade levels. Examinees were tested every week.over a period of

many weeks. A1l indications are that the models are indeed useful.

Finally, Molenaar writes that the estimates of are_unbiased »>
only if the selected pairs of equivalent items are representative{of the

item pool. Actually, the estimates appear to be always biased whether we

v M Y ’ ~.




. have a random sample or not. However, we do get maximum 1ikelihdod esti-
E .

¢

mates as long as the estimates have an admissible value (Wi%cox, 1977).

* 3. THE MULTINOMIAL MODEL

- ‘ . \

In the next se'cti_on of Molenaar's paper, he turns his attenfcibn to
the mu]_tinomia] model. Suppgse an examinee responds to n items, none of
which are equivalent. t (A strong true score model for equivalent item
pairs is described 1'n' Wilcox, 1981.) Still considering only a gingle

? 2
examinee, let y be the number of items he/she knows, and let z be the num-

: ber of items not known but guessed correctly. My paper (MWilcox, 1979a)N
" considers a bivaria"ée analog of the binomial error mdde] (Keats and Lord,
1962; Lord, 1965; Lord and Novick, 1968, chapter 23). In particular, I
assume that the joint density of y and z is

. ‘ nlgly?(1-z-y)"Y*

f(.YaZ ‘ Cs'Y) = ﬂ_y!z!(n-_y-Z)! s

(3.1)

where n is the numbe; of items on the test. Ordmarﬂ_y we cannot make
inferences about ¢ and v, but as already indicated, we can make infer-
ences about: them whem: equivalent or hierarchically related items are
available, or when(ari’an{‘S;#;er-untﬂ-Eorrect sgoring procedure is used.

Of course¥we can_assume guessind is random (see in particular,
Morrison ana,Brockwa_y, 1979), but I have already deseribed the problems_
with /his,. Howéver, we can empirically test whe'gﬁer gﬁessing is at

' random (Weitzman, 1970; Wilcox, 1981b), When an answer-until-correct 3 /

scoring procedure is used, this 'ﬁbrresponds to testing whether Po=P3= «+e =Py-

. (

.
s

. If guessing is not at random, perhaps infrequently chosen distractors, could
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.
. ! be modified or replaced so that this assumption is more realistie. In
this case, results in Morrison and Brockway (1979), and Molenaar {1977), .
might be applied. Wilcox (in press a) gives some results that might be

useful in identifying those distractors that are infrequently chosen.

-

-Note that we can also measure how far away guessing is from being random
{Wilcox, 1981b), ahd we can empirically determine how many distractors
< are needed when testing a particular population of examinees (Wilcox,

1980e).

-~

o . 4. THE DIRICHLET PRIOR

In Wilcox (1979a), I assume that ¢ and y have a bivariate Dirichlet

density given by

I3

(v vytv.)
_ 17273 c V-1l va-l v3—1 .
. a(z,y) = '1"(\’1)1‘(\’2)?(\’37_ c ) Y (1-z-v) (4.1) o

If we can estimate z and y for N randomly sampled examinees, we carf esti-

mafe the vi's. I used equivalent items in Wilcox (1979%a) to do this, but

-

as a'}gead_y noted, two other approaches are now avaﬂabl%which do not

assur@’ random guessing.

»

; Let Eii and éi be the maximum 1ikelihood estimates of z and g, respectively,
for the ith random]y sampled examinee (§=1,...,N). Molenaar raises.the

\ n N
interesting questior of whether we can improve upon g5 and B; by shrinking

-+~ their values toward each other. Molenaar alludes to the possibility of
using Kelley's regression estimate of true score. ' If “"Better" estimates

of ¢ and 8 are available, we might be able=¢o get improved estimates of

the hyperparameters vys V) and vs. If an ensemble squared error loss

e
. function is believed to be appropriate when estimating z(and g), there is




‘ A

réﬁson to hope that-such a proéedaré might improve upon the maximum’ .
1ike]ihqod estimate of z (and B) used in my paper (e.g., Efron and
Morris, 1973; Wilcox,' 1978a). Griffin and Krutchkoff (i971)’show that \
ke]ley'§ regression estimafé of a parameter is tﬁé optimal linear estimate ~
under;quared error loss if we start w}th an unbiased.estﬁtbﬁ
mate of the parameter. Howéver, the estimates of ¢ (and B8) is,biased;
and so it is not clear whether Kelley's regression equation wilg help im-
prove my estimates of ¢ and 8. We might use Kelley's regression es;imate
#nyway , but the efficacy of this needs to be éhecked. For an alternative
way of possibly improving the estimation of ¢ (and ), see Wilcox (1980c).

Molenaar also implies that using Kelley's regressiqg,estimate of
¢ and B might also improve the estimates of the vi‘s. There is, unfor-
tunately, no evidence that this is ever the case. In an unpublished re-

»

port, I tried a s1m11a; tactic in a s1tuat1on where unbaased estimates of

a parameter were ava1Téb]e but the resu]ts were not overly convincing.

Next Molenaar comments on the numerical example in my paper. To

* estimate the v.'s, I used artificially generated data on 1,000 examinees

=

;!

-

i
taking 100, pairs of equivalent items. Molenaar inferred that a large

number of items and examinees are needed to get reasonably aécurate esti-

mates. If shéduld be pointed out, however, that the mumber of examinees -
and items was completely arbitrary. Just=how accurate an estimate of the

vi‘s we get with a smaller number of jtems is unknown. We would, of

course, expect the accuracy of the estimates 'to depend on actual

]
values of ¢ and 8 (cf. Wilcox, 1980a). From Wilcox (1979b) we would
\ .

also expeét to find instances where a moderate number of examinees would
’ , S
give wildly inaccurate results. Such situations might be rare, but this
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" has not been established. The main point is that currently there is no
informatidnh on how many items should bg used when applying the model.

Note that fgr reasons given by Mosimann (1962} a slight modification
of the estimates of the vi's used in Wilcox (1979a) might be desirable,
Mosimann (1962) describes the procedure, and Wilcox (1981a) indicates how
to apply Tt~$o the case where we have pairs of equivalent items. Any

future investigations on estimating the v.'s should include this procedure. \

i
Molenaar also raises the important issue that the binomial error

model (and consequently the multinomial model) 1mp11es that all items have
the same level of difficulty. From a theoret1ca1 po1nt of viéw, this
restr1ct1on 0 tQ//model is unacceptable. A sgmple way to eliminate th1s -
problem is to use an approximation to the compound binomial distribution
(Lord, 12§5). However, for many purposes, this s;ens to be unnecessary
(Lord, 1965; Algina and &oe, 1978; Wilcox, 1977b, 1978a). .Also the beta-
binomial model has given good‘results in other empirical investigations
(Gross and’Shulman, 1980; Subkoviak, 1978a). Since the beta-binomial

mo;él ;ppears to'be both useful and robust in certain respects, there is
hope that the Dirichlet-multinomial will share the same properties since

it is the multivariate-analog of the beta-binomial model. Some evidence

" for this is given in Wilcox (in press b) where the Dirichlet-multinomial )
model was applied to real data, but more work needs to be gone.‘ For

further discussions of the binomial and beta«binomial models ,-see Wilcox

* (1981). ‘

Molenaar suggests that to accomodate-unequal-item difficulties, we

might use the Rasch model. (For a review of }ateﬁt trait models, see

Hambleton et al., 1978; and for a review of some recent deve]opments'on
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the‘Rasch model, see Wainer et al., 1980.) However, this model does not
yield an estimatg of Lo at‘leasé not in any way that has been demonstrated,

and it ignores the problem of guessiqg. §oneklatent trait models--but

not the Rasch model--have what is sometimes called a guessing parameter.

This is just the lower asymptote of the item chafacter{stic curve. Note,

however, that this is different from the notion of Type I and Type II
guessing. Thus, the Rasch.model is unable tb solve any of the measurement

problems described ‘in Wilcex (1981b, 1980e). No claim.is bejnb made that
/

lateht trait models are useless, nor do I believe that latent trait and

) latent structure models are in competition with one another--the point is
>
v

n|||||!|“||: .

that they answer'different questions. For further critical remarks

regarding the Baséh model, see Lord (1974).
5. MODEL ADEQUACY

1
Molenaar objects to the implication of the Dirjch]et-mu]tinomia1-mode]

!

that ¢ and B8 are independent over the population of examinees, 'and from a

theoretical point of view, he is, of course, correct. As Molenaar puts it;
"One wonders whether a person who knows many items from the domain will

also be more clever in guessing the remaining ones if only by the 'warm

glow of success'"? The first point is that if we throw out the model

becqyse r and § are independent, we must throw out the random guessing

model as well since 4 ?nd B‘%re again independent. The second point is

&

that when addressing a particular measurement problem the seriousness of
assuming ¢z and B to be independent is not known. .
. To allow ¢ and 8 to be correlated, there appears to be three possibilities

The first is to replace (3.1) with

|
. .
_ r
T h
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. ,( )’ - C‘]:-r‘j. T(\)1+\)2+v3+j) vr+j-1 "2'1( )\)3:1 ( |
© ORL,y) = . : 4 Y 1-z-y - (4.1
. 3=0 ‘P(}; ’ I‘(v1+J)I'(v2)I’(v3) \ o
, - where cj is a constant depending on j, but not v, t is an unknéwn pargmeter,

and ¥ is a functjon of r (Wilcox, 1981a). The density (4.1) contains (3.1)
as a spétia] case. Moreover, if ¢ and 8 are assumed to be continuous, .

" they are independent if and only if (4.1) reduces to (3.1). One choice

J

for c; and v is cj=(j!)_'1 and W(rl?er, in which case thé‘marginal'dens%ty
. : ) '
of ¢ belongs to the non-central beta family. Assuming (4.1) holds, let |

r=v,, S=v,tvg, and let ;y mean expectation with rESpecf to . the probaBility
. . g \

+ function

J
fly) = ——;%;y- (y=0,1,...). "

The first four moments of the marginal density of z are

: | . 1)
.‘ ' ! l“SEy[Hs ) - ',

ty

)

&

' 1
My = S'(S'l)“l'(SH)SEy[W]

-
[}

, 1
!5{2-5(5-1)(5-‘2)Ey[—r751—+—j—] + 2s(s-1)fts+1)Ey[W]

3
- .. ﬁ -
v - s(s+1)(s+2) Ey[—ﬁ%;?:y—]}
s :

r Hy, =*Ué)'
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where ) 1K
) ! ‘
+s(sr)(s12) £ [t - 4y,
. . '
E(y) = ¥ (z)/¥(x), and Y,
dy = 1% Ey)-2(s+1)4(5+1) (592) E[rehi]
L 1 . A
. + (s+1)(s43) E[w] | ©
) »
. - - . ” )
+ (S+1) {E[‘\ r_-+s+y+3 ] "' (S+2) E[ I"+S+2+y - r,_*_S_‘|_3_‘|_‘y }}
Note that there is no need to evaluate E(y) when calculating w, since E(y)
cancels out. \

It can be seen that Ey(ty)=v(rt)/w(r) and so

e ¢ T v

for any integer k 3:0 (Chao and Strawderman, 1972). The integral in this

last expression can be evaluated with IMSL (1975) suﬁ}outine DECADRE.

Thus, the meghod of moments might be used to estimate the pﬁrameters {n (4.1). .
It should be stressed, however, that the practical advantages of using

(4.1) are not known. .
) The second apbroacﬁ to allowing ¢ and 8 to be orrelated is fo follow
the suggestion of Aitchison and Shen (1980) and replace (3.1) with a Togistic

\
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normal distribution. However, the moments are not reducible to any simple

form which makes this approach impractical for the problem at hand. For

alternative genera11zat1ons.of (3.1), see the papers cited in Wilcox (1979a).

The third approach is_to apply Dirich]etumd%tinomial to an answer-
until-correct séoring-broﬁedure This, and other models, is now bewng
tried out on somé real data. The results should be ava11ab¥e in the near

future.

6. CONCLUDING REMARKS

The goal in Wilcox (1979a) wa%;:o suggest a Etrong true-scoré model
that allows guessing to vary err a popu]gtion of examinees. Another
motivation for ?”%Knmdel was that there are real s1tu;t10ns where equ1va-
lent 1tem$;9re assumed (e gs, w11cox, in press b) but previously there was
no strgng true-score model for hand11ng this case.

Molenaar has raised seme important concerns abglt whether the prob-
lem of guessing has been, satisfactorjly dealt with. Considerable progres;
has been made gince my péper was published, but-I still ag;ee with hfm
that more work needs to be done. The important point of this papé;:is
that today we have several methods for ggdqing with gues;jjg without

: |
assumingAt is at random. Moreover,.each solution can b& empirically

checked {;‘sevgral ways. Early attempts at correcting for guessing were
based on rather restrictivé assumptions, but there seZhS to be situations
where thege assumptions are apprépriate. More recent solutions are based
on weaker assumptions, but we need more experience with them before tﬁey
are routinely applied. As pre&jou§1y indiéated, an emp%rica1 investigation

~
of an answer-until-correct scoring procedure is currently underway which

_ should partially correct this problem.
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‘ . Abstract ,

Most strong true-score models assume that when an examinee does

not know the correct response to a test item, the probability of guessing,

say ‘B, is independent of an examinee's true score. In fact, it is common

\

practice to make the more restrictive assumption that B is the same known

_constant for every examinee. One excébtion is thesDirichlet-multinomial

model; but true score and guessing are still assumed to be independent.
4 . | ]

"This paper describes an extension of the Dirichlet-multinomial model that

allows true score and guessing to be correlated.
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Consider a multiple-choice test item designed to determine whether
an examinee has acquired a particular skill. An obvious problem is that

an examinee can give a correct response without knowing the answer; yet,'/

“in many situations, it is economically infeasible to use completion 1tems

in an attempt to correct this d1ff1cu]ty On the otherhand, guessing can

-~

have serious implications for certain types of achievement tests (e.g.,
Wilcox, 1980a, 1980b). Thus, it is natural to search for scoring pt;~
ceda;es and probability models that take guassiné into account.

Suppose afﬁaitiple-choice test item has t a]ternatfves consisting
of t-1 distractors and one correct response. Typically, the problem of
guessing is handled by assuming that g=Pr (correct response | examinee
does not know) 1/t, i.e., guessing is at random (e.g., Hamilton, 1950;
Chernoff, 1962 Duncan, 1974; Morrison and Brockway, 1979) There ar'e‘nl
at least fwo serious obJect1ons to this approach. frst, it is unrealis-
tic to assume that every examlnee has the same prob ity of guessing.
For example, some examinees might be able to eliminate one or more dis-

1 .
tractofg'from consideration without knowing the correct response. In

this case we would expect to have g>1/t. We might assume B=1/t but in ,

‘'some instances this does not yield satisfactory results (Wilcox, 1980b).

The second objection to seiting g=1/t is the implication that true score

and guessing are independent. As argued by Frary (1969), we would expect

h 3
this assumption to be false. Of course, if we set 8=0, we still have this .

problem; :
Let z be the proportion of skills among a ‘démain of skills that an
examinee has acquired and set y=(1-z)8. Wilcox {1979) proposed a solution

to the first problem by assuming that, over thé’popu]ation of examinees
A }

*

.4




£1.2) —rl('%‘%s(sl)- o1 (1-0)9-1,

¢ and y have a bivariate Dirichlet distribution given by
- P(v1+vé+v3) Vi=] Vo- v,~1

: 2°l (™3
(1-0) r(vl)r(\’z)r(vé) 14 Y (1 14 Y)

where vi>0’ i=1,2,3 are unknown parameters gnd'% is the §amma function.

It was a]so’assumedftﬁat the probability of x correct responses for an

- - ‘ - -
examinee taking an n-item test is

(1.1) [Q] o* (1-8)"7%
where g=g+y is the examinee's percent correct true score. However, the
i ) *
second problem remains since (1.0) implies that ¢ and 8 are independent.
S

The restrictive nature of (i.O) has also concerned statisticians (e.g.,

James, 1975; Connor and Mosimann, 1969; and Antelman, 1972) but the pro-

- posed generalizations of the Dirichlet distributijon have proven to be

Tess than satisfactory. %he purpose of this paper is'to describe a broad
class of distributions that contains (1.0) as a special case, and_whiéh
allow ¢ and g to be correlated. Our general results are illustrated for
the special case where the marginal d%stributioﬁ of z is non-central beta.
gefore continuing, however, it is convenient to examine various extensions

of

the beta dist»ibution.

2. A Generalization of the Beta:Distribution

In this sectign we describe a family of probability density fuhc-

tions where (1.2) is "mixed" by a distribution that belongs to a large

class of discrete probability functions. We then indicate how our results ,




(24) oy = se(s-Dug-(s#)s By (et

might be applied when a particular generalizatfon of the beta density is

. used to approximate g(e), the distribution of 8 over the population of

examinees. =
‘Consider a random variable Y having the probability function,
€

e |
(2.1) P(Y=.Y) = _Y{?)_- 4 y=0,1,----‘

lere t is an unknown parameter,
- .

’

Fy is a constant depending on y but not

1, and ¥ is a function of t. Expression (2.1) is referred to as a power
series dist;ibufﬁon by Noack (1950). There are e;en more general discrete
distributions that contain the power series distrjbution as a spebia] case,
(e.qg., Patil, 1962; Gupta, 1974), but they are not diSfussed here since
(2.1) is of sufficient generality for present purposes.

- Consider s

~

3
e CsiT : : -
(2.2) g(e) = jEO ?‘21) r(&(_ﬁ;@; o7t (19571

It is readily verified that (2.2) has the properties of a probability
density function, i.e., it is non-negative and it integrates to one. If,

for example, we set cj=(j!1"1 and ¥(t)=e"" we get the non-central beta

" distribution (see, e.g., Seber, 1963), and, if in addition =0, (2.2)

reduces to (1.2). The first three-momepts of (2.3) are, respectively,

_ [
@3 = 1, i)

s

| \
(2.5)  uy = H{2-5(s-1)(s-2) Ey(—%;)-,—] + Zs(s'—]??ﬂ)[:y /W]ﬂ_’ry ]

- s(st)(s#2) E, [W]]

.‘1




. r
. " where E_y denotes expectation with respect to the density given in expression

(2.1). It can be seen that Ey(ty)=\v(rt)/?(r) and so from Chao and Strawderman
(1972) it follows that

| 1 _ r+s+k-1_ 7
‘2.5) Ey (W] = 6’10 ‘i‘(TU)du.

for any integer k > 0. For a detailed derivation of these moments, see
Wilcox (1980c).

F

Again omitting the tedious algebra, it can also be shown that

(2.7) Mg = M3 - % [uj-d;]

where
) dy =% [r+E(y)-2s-s(s-1)(s+1) E[_Flf{y—]
o )60
+ S(S+])(S+2) Ey[?S"'Z—'*'_Y_] - dZJ,
B{y) = v¥*(x)/¥(), and
dy = r+ E(y) - 2(s+1) + (s+1)(§+2) E(W] /
+ (s+1)(s+3) E(_Y‘TS_}')'—*T] »
7} ' Sl
~ 1 ! -
- + (s+1)° fE(w] - (s+2) E[ r‘l-;f-z-*-y - ]1 -

Note that there is no need t6 evaluate E(y)/ when calculating Mg since E(y)

cancels out.




. Some special cases. To illustrate the results given above, suppose

(2.8)  P(Y=y) =—§{5—;{%T d(1-1) , y=0,1,.0..

where 6>0 and 0>t>1. In terms of (2.1) we get this distributioh by setting

¢, =T (8+y)/(y!r(s)) and w(r)=(}—1)f6. Thus, (2.5) becomes

Ey[ e B L A (S VI Ry Y
/ .

Hence, from expressions (2.3) - (2.5) and (2.7) we have the first four

moments of a(s).

As another illustration, suppose we replace (2 8) w1th the hypern

Poisson probability function (Bardwell & Crow, 1964) given by

-

r(s) ¥

. f\ POSY) = R Ge) Tlom @ Y0 seee -

2
ere 0, 20 and 17 61) = 1+ -+ iy

+ 7% is a special -

case of the confluent hypergeometric series. In this instance

r(s) o3 r(restj) o™ 1(1.9)5)
711 (52) T(63) T(rT 100

gle) =
J=0

Setting ?(1)=TF](6,1) for fixed &, the value of E (‘F¥§%E;§"l is given

by (2.6). Again we can determine the first four moments of g(e) with_

-(2.3)-(2.5) and (2.7).
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. , 3. The Non-Central Beta Distribution

Before descAribing a model éhat allows g‘ and g to be correlated, it

is helpful to consider how the wesults of section 2 can be used to estimate
g(e). We do this for the case where e is assumed to have a non-central

.

beta distribution given by

-x.J S . ) ‘
= § —& A" T(rkjis) r-1 q..y5-1
(3.7) g(e) 550 3T T r#g,r s;- ® (1-e)
. « A

where A>0, r>0 and s>0 are parameters to be determined. As previously

noted, (3.1) is a special case of (2.2). The corresponding marginal dis-

. tribution of observed scores, assuming (1.1) holds, is -
h(x) = 3 CB(r+j+x, n+s-x) J

where B(r, s) = [I'(r)<r(s)]/r(r~+s). We also note that if y is.the observed
. score on a randomly parallel test having N items, the joint distribution’

of x and y is

-
e . »

h(x, y) = s} ["] X (1-0)"% C:‘] oY (1-0)"1Y g(e)'de

X

-3 ‘ B{r+j+x+y, n+n]+s-x-y) : L
) =0 3t * (n+1)(ny#1) B(r+j,s) B{T+x, n¥1-x] B(1+y, n*1-y) '

This Tlast result might be useful in the single administration estﬁnate of a

N mastery test. (See Huynh, 1976.) ‘
‘, He' will need a method of estimating the parameters A, r and s using
the observed scores of a random sample of N examinees. The first stép in

solving this problem is derivH’ng expressions for the first three moment's

of the non-central beta distripution. From the previous section we have

. - that




-

. ?3.2) -\lf] 2 J-ge™A !l grs- et gt

0

From Wishart (1932, p. 445) we see that

-

fol'tﬁs"'] Mt g

1

= g5 Flrts, ristls a) g v
- L 4

= ris F(1, restl, -a). R

Where F is the confluent hypergeometric series given by

T oo a a(a+1) 2
i Fla, by e) =1+ - ¢ * ey € * \)
Hence, we have that . N
) m o=l - == F(1, pesHl, ). -
. Tables and computational proéedures described by Abramowitz and Stegun

(1972, Chapter 13) can be used to evaluate F which in turn gives us the:
;la]ue u1 or the value of u] can be- deter'-tr_ajned by evaluating the integral
in (2.3) with IMSL (1975) subroutine DECADRE. Note that for A=0 (the
beta distribution) expression (3.2) reduces to r/(r+s) as it should.

The second moment about the origin is

(3.3) My = s=(s-1)1~(s41)s e {:tr+s gt

Y

/ Finally, the third moment is

(3.4) % {2-5(s-1)(s-2) E[ N;,:_j ] +25(s-1)(s#1) E [__1 ]

rs+1+]

. ) - 5(5+])(§+2) E[—r‘i';sl—fﬁ_] ]




-

-

*

¥

" where the expectatigns\g:: taken with respect. to.ép g

2 4

s the kth factorial-moment of the marginal distriﬁutionqofeobsefved

haV1ng a Poisson dlstr1 udion W1tﬁ!parameter A Agaln referring to N

Chao and Strawderman (1972) : ‘ "jzk .
‘ Tk g rstkel
-EW.- ft dﬁ? R

(resk) ™! FQ, rstkl, 1), ke0,1,2.0

»
As before the integral in this last expression can be evaluated wfth IMSL
" subroutine DECADRE

-

It is known (e.g., Lord and Novick, 1968 p. 521) that uk, the kth

moment gbout the origin of the true score distribution, is equal to

o

2.6) , Mkl gt 2, L a
where ‘ . ‘ ' Ii
Mk'= X X h(X) ' ' .- " A
x=0 ) \
. ©

scores, and

. ) Y - .
, ifk1=x(x-1) ... (x-kil)f\ ; . ¥

-

- ¢ . AP - 4

Thus, we can use the observed scores of a random samp]e 'of N examinees~»

to estimate By with say ﬁk Substwtutlng Hp» u2, u3 for u], Hos p3

. respectwvely in equations (2. 3), (2 4) and (2.5) and so]v1ng for r, s and

A yields estimates of théseparameters say v, § and .
At present, the solution to these equatiﬁﬁs is being obtained usinEf '
nqper1ca1 ana]ys1s techn1ques - In partlcu]ar, we used subroutine ZSYSTM

‘to solve Ky and Mo fbr r and s using a f1xed value of A. As initial esti-"

mates of r and s we set A=0 in which case explicit estimates of rand s




, 10

are availabe is indicated in the numerical illustration below. With the
jnitial est}matas Sf r, s and A we computed the corresponding value of
M3 If this value is not-n close agreement with ﬁz, wefincreased A by"
one, solved for r and s, and again campuggg»the implied value of.u3. We
repeated tgis process ‘until values of A, r and s were found that give a ,
good approximation to‘y3. - C | )

Numerical illustration. Suppose we have a 5-item test and that f

examinees received an observed score of x, the values of which are Summar-

- ized in Table 1. c ,
.- Table 1
‘ -
» Observed Frequencies on a 5-Item Test

»

x: 0 ] 2 3 4 5

e £r 23 190 3 2156 4

« -

“~
The first three moments of the true score distribution vere estimated to

_be .652, .458 and .339 respectively.

Setting A=0 and using the method of moments,:fg‘ imate r apd s with _,
Y XY 2‘ “ ) :
. ()7 (1-x)) .
~ 1 1 v - .

N s = e - M
. ' uz\-ﬁzl . !

L g
-

N ;T}
\
H

. . “ 2
14 - ul (L,-ul) + ﬁ -] R ° F -

P 1
“2""%

m
!

(e.g., Hyynh, 19765 Wilcox, 1977) yielding 73.93 and §=2.04. From ex-
pression (3.5),_or from standard resultg on the beta(distribution, these
valués of r, s and A imply éhat u3=.346, butas previously noted, the esti-
mate, of %2F3351T339. Therefore, we increased A to 1 and solved (3.2) and

(3.3) for

and s with IMSL (1975) subroutine’ ZSYSTM yielding $=3.2876 .

)
N »~

T.42 -




{

. and §=2.2149. From (3.4) it follows that uy=.33896. Thus, these values
of r, s and A are in reasonably good agreement with the estimated values
of u3, uy and ug. If (3.4) had yielded a number for n_ greater than .339,

we would have_increased A from 1 to 2 and repeated the process.

J '4. * EXtensions to the'Dirichlet-Multinomial Model

In th1s final section é@e use the results of the previous two secttons

_

to extend the Dirichlet-multinomial model so as to aWJow ¢ and 8 to be

-
correlated. First, a brief review of this model is 1in order.

Consider a single examine® responding to n dichotomously scored items
randomiy sampled from some item pool. Let x be the examinee's number
‘correct score, Yy be the number of items tﬁ\\exam1nee knows and z be‘%Pe
number of 1tems that the examinee doe; not know but guesses “the correct
5 response Let £ be the proportion of items in the 1;em domain that an
. j examinee knows and.let B be the probability of guessing the correct re-

sponse given that the examinee does not know. It follows that y and z

k ave a multinomial probability function given by .

- Y * k9

nt &Y % (G-g-y)"EY
ybzt (n-y-z)

~

where (1~ ;)B As prevzously mentioned, Wilcox }1979) assumes that ¢
aﬁH vy have a b1var1ate Dirichlet d1sfr1but1on given by (l 0). The model

contains the beta-b1nomia1 model as special case (when 3-0) and so in
a L : ' .
terms of applications, it has all of the appealing features of the beta-

binomial model that are described by Lord .(1965). An added advantage is




.3
—
[\

that the model allows guessing to vary over the population of examinees.
In some cases latent structure models can be used to estimate ¢ and é

) ‘ H 7
for a specific examinee which in turn makes it possible to apply it to

real data; (See'wilbbx,-1979’ for furthér details.)

-

The form of the non-central beta d1str1but1on suggests a genera11—

* zation of (1.0} - More‘spec1f1ca11y we consider rep]ac1ng‘(1.0) with

¥

er +v,+v +])

(4.1 glz, v) =
i

It 8
o

It is readily verified that (4.1) is a probability density functioq. Note
that if 2=0, (4.1) reduces to t(g\piricﬁ}et distribution and so we expect

it to give as good or better an épproximationéto the joint density of ¢ -

and vy. . T T
. From known xesu]ts aboutgi;.o) 1%§¥bllows that the marginal den§1t1es

of ¢ and y are non-central beta distributions given-by

A3 e . . {/ .
.2 e ) I (V1424 3+j) Viki-1 0 VztVa-1
‘,.'
gjd S
e M\ P(Vi+Va+Vs3tj) 21 (oy) 1tVstic]

{(4.3) g,(v) = jEO 37 L0, ) Tlv Ho +]) v

From results givenwby Ishii and Hayakawa (1960 it can be deduFed that

L3

L4 - . N
the marginal distribttion 8f y and z is ,

_xkj B(Vit+y+j, Va+z, n+Vz-y-z)

(-0 ol 2= T pye) By, ) BUR HERT YR

j=0

<

where Bfa, b, ¢) = [r(a) 1(b) r(c)Yr(asbic).  *

-

s —‘ﬁ-.]) I'(vz) r(v,) 17T "2 (Vs
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. The density of x=y+z is

f(X) = ; e':kx;' B(v1+v2+j+x2 H+V3‘X) ' o ]
=0 j! (n+1) B(v,+v,+j, vy) B(1+x, n+l-x})’
~4 . E
B and the joint distribution of x and ¢ is . SN
: . - - -X j ‘ ~ ) . AI’
i 4.5 X =M z - Ty
(f ) . p( ’ C) (X} J':O J! B(\’l+3’°\)2,\’3). ) + *’M;‘f_ -

[ : [zl By, n-Xv) Xy -1 (}-;)“‘x"w”"z*"a“]
w-‘: - ) - .

v

Finally, following Wilcox (1979),

R W '
n A By
(4.6)  E(z]x) = —ﬂ;y [] jfo 3! B(v Fvyvg) - I

~ ¥ - . ’
) [z (:,‘] B(w+v,, n-xtv,) B{x-whv +j+1, n-xw+v_+v ):{
0 3

' 3 1
, W= _ ’ 2
_ . ,

The appealing feature of (4:1) is that unless it. reduces to a Dirchlet °

distributian, ¢ and B are correlafed if the distributions of ¢ and Y are

assumed to be continuous. The ’proof of this statement follows from a re-.
_ sult given by Darroch aud Ratchff (1971). 1In particular, as a special :
case of their theorem 2, 1f fhe probab1'hty density function of z and y is .

contmuous the independence of ¢ and g implies tha/; and y have a D1rch1et

W
b b
LA

d1 stm bution.

Numerical illustration. Data collected by the Maryland State Depart-

- ment of Education is used to illustrate the modxﬁed D1r1ch1et-mu1tmom1al
model. In particular, we use the test result$ on students taking a pre-
liminary form of a proficiency test in mathematics. The test. consisted of

S . , -
. thirty skills with three items per skill for a total of 90 4tems on the test.




We could use the information on all three items associated with each skill

to obtain an averaged estimate of ¢ and B%for each examinee, the average‘
being defined in the sense described by Harris and Peariman (1978). How-
fver, since we merely want to illustrate xﬁegqalc%lations involved in

: app]}ing the model, we simé]y ignore the iﬁ;argation on the third item.
For a §pecific examinee, we summarize the observed responses as shown

in Table 2 where a 1 designates a correct and'a 0 an incorrect response.

Table 2

Observed Freguencjes for an Examinee

Item 2 “
. 1 0
e — & |
L IRSTI ISY)
Item 1 ”
0] %57 | *go

-
Aol

For example, X0 is the number of items the examinee is correct on the first

>

item of an item pair and incorrect on the second. !

Following Wilcox (1977) we estimate z with -

. X1 %0 ] [ %0 * %0 ]
, 8= TX n - '
- 00, ) A '

If x00=0 we set z4equal to x]]/n and if <0 we estimate ¢ to be zero. As- T
for B8, we use 8 = L

’ *10 * *00 )

1Y ~ ~ @ '

If X10 * %o = 0 we set g = .25. If g > .5 we estimate 8 to be .5. We '

note that Here, g represents the probability of guessing the first item
in the item pair; the probability of guessing for the $econd item does not

enter into the calculations. @
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The values of ¢ and B were estimated using the test results on 2,000
examinees randomly sampled from the total number of examinees available.
The 2,000 estimates were ;hen used to compute the first three sample
momgntsé%f ¢ which were found to be .652, .496 and .405, respectively.

Since the ﬁarginq] d?stribution of ¢ is non-central befa{ we can usé
the methods previously described to estimatexﬁf v2+v3 and X where v,Hv,
corresponds to the parameter s in séction 2. The estiwates-are 1.2231, .
.83942 and .5, respecfively. Next we computed the first sampie moment of
¥ whichh was .1287. Since y is asspmed to have a non-central beta distri-
butfion, it follows that the mean of y is

= 1. S T A S e R ) )
My 'l(vl-!-\ra)e fo t e dt : -

" Substituting .1287 for Mo 1.223 for v , 2.062 for v,tv,+v, and .5 for A
and solving for vy yields 63=1.279. Thus, estimates of vl,vé,va and A are

9,=1.2231, ,=.83942 - .1279=.7115, 65.7279 and i=.5.

An alternative extension. For a specific examinee and a randomly . -_]’-ﬁ\-

chosen item, let a=Pr (incorrect response | examinee knows), Qe conclude
*this section by indicating that, to a certain extent, the Dirichlet-
multinomial model can be extended to include the possibility of a>0. If

we allow a>0, an éxaminee's percent correct true score is 8 = (1-a)z+B(1-z).
Let 7153(1-a)-a; in which case o=z+y,. As long as B>a, we have that
0<z<1,0 Syys Vand O<g+ vy < 1. Thus, it is theoretically permis- -
sible to assume ¢ and g have a bivariate Dirichlet distribution, or more \
generally, their joint distribution is given by (4.1). Moreover, the

parameters of ‘the model can be estimated in essentially the same manner as

- .

outlined above.

47
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. ABSTRACT .

Wi]gox (1980a) proposed a model for an answer-until-correct scoring
procedure that solves various measurefient problems. The purpose of this
paper is to empirically check an implication of the model, -and to, pro-
pose and investigate ;ome strong true-score models. One of the strong

true-score models assumes the probability of guessing the correct response

- -

to an item is a Strictly increasing function of an examinee's ability
level, and th? model gives a reasonable fit to the data. The paper i1lu-
strates that this new model is easily épp]ied %o situations where the
beta~binomial model is typically used. The other models, including the
Dirichlet-multinomial model, proved to be unsatisfactory. Eina]ly, pe-

tential difficulties with the new model are discussed, and possib]e/direc-

& » \ a
'

tions -for future research are described.




1. INTRODUCTION

Wilcox (1980a) préposed a mpde] for an answer-until-correct scoring

; procedure that solves various measurement problems. In partich]ar; it

can be used to test whether guessing is at random, to measure hot “far away"
guessing’is from being random, and to correct for guessing without assuming

guessing is at ripdom.. More recently, Wilcox (1980b) described §i£ other

,

measurement problems that the model can solve. One problem was to empiri-
cally determine the minimum number of distractors needed on a multiple-choice
test item. Another can be described as follows: for.a randbuﬂy selected
examinee, let e be the expected number of items on an n-item test for which
we cqrrectly determine whether the examinee knows the correct response. How.
many examinees do we need to sample sé that there is a reasonably high
probability of correctly determining whether ¢ has a value above or below
some knéwn constant. ]

Two types 'of guessing were considered in Witcox (1986a).;.+he first,
or Typé I guessing, refers to situations where we have a population of
examinees and a single item. %or a randomly sampled examinee, the pro-
bability of gueséing'is defined to be the Pr(correct response | examinee
_does not know). Type II guessing is definéd in terms of a s{ngle examingg t"fg

and a domain of items. In particular, it is the Pr{correct response |

w

’

examinee does not know) for-a randomly selected item.
Y

‘In Wilcox (1980a),.it was assumed that an examinee either knows the
correﬁt response and answefstheiigm correctly, or the examinee can elimi-
'nate at most t-2 distractors.where t is.the number of -distractors on
the‘item. ‘According to an answer until-correct scoring procedure,

' ’ v
examinees choose distractors until the correct response is identified.

/




. [ 4 Assume Type I guessing, 1e£°é be ~t{1e proportion ?f exalm'nees who knéw‘

the item, and let ;i(i=0,...,tt2) be -the proportion of examinees who can .
eliminate i distractors. Followin_g Horst (1933), we also assume that

exampinees who do not know guess at ;‘andom from among the distractors . ,\
they cannot eHn'ﬁnate'.i 'Ehus, the -probability that a randomly chosen ex-

2, aminee chooses the correct alternative on the first attémpt is

.

t-2 ' ~ ’ . ¥

pp=tt .z 7,%-1’) T " (1.1) ’
iz ! ) :

The probgbﬂity of giving the -correct response on the ith attempt is

Py = I z3/(t]) (i=2,...,t) ' (1.2) A

. J=0. . ’ , 1 ’ / ;-

Py 2Py 2 ... 2Py ‘ J ' (1.3)

Equa‘tion (1.3) can be empirically checked (Robertson, 1958) Moreover,
_ maximum, 'hkehhood estjmates of the Ps 's are easﬂ_y obtained when (1 3) is ‘
. /assumed by app]_ymg the "p001 adJacent ~-violators" algorithm (e g s B low, i
et al., 1972, pp. 13-18) which in turn yields maximum hkehhood e 1mates
of the z's. In particular, if in a random sample of N exa?nmeg;, 1 exam- * *
inees choose the correct a1ternat1ve on the f1rst tr_y, ant x[exammees

choose the correct alternah ve on the second try, then

g = (x - /N, X2 %
=0, ‘ X] < Xy L (1.4)
' . s a maximum Tikelihood estimate of . (For alternative methods of
sqoring and analyzing an'swer-untﬂlcorrect test's', see Dalrymp_]e—Mford,
o 1970; Brown, 196'3.) ) ' ‘ ) ) ) ‘ .
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4

The first is to empwicaﬁy j

s ;\;:;//// r.,, ) ; B o
_ There are two main goals to this paper. i i i
check the assumption in equatton ('1 3) for a reasonably large number, ofﬁ
1tems and the secd‘nd is to propose and to empirically investigate some~

or\reRTCpmng procedure.

L]

Y
strong true- ~score models based on an ansv :er—untﬂ ~C
We note that the 1mportance of strong true -score model has long Been esta-

bhshed (e.§., Keats and Lord, 1962 Lord, 1965 1969 Lord and Novick,
played an important ro]e 1p;the realm -
™~

v, -
-
1968), and more recently the.v.

4 v
of ‘criterion-referenced testing (e
EMPIRICAL TESTS OP\EQUATION (1.3)

Huynh, 1976, 1980; Wﬂcox, 1977)

2.
+ As not%i above, our first goa]‘“:i.s to empirically determine whether

H
equation (1.3) is reasonable when an answer-until-correct scoring procedure

-

is used.» To do this, we used test results on-5620 students enrolled in
Each student took three tests during

anl'undergraduate psychology course.
The first two tests had 37 and 40 items respecti ve]_y, and *
" All three teals had four forms’ and :

, . the semeste‘r
L 5 the ?ma] exammatfon had 40 items.
\j]] Jtems had t=5 d1str‘actors Each form cons1sted of the same items,
Using re@‘ults in- Robertson’
Each item ~

but they were presented in a differentaorder,
(1978), a test of equat1on (1 3) wa,s made for all- 117 1tems

was tested four t1mes aqcordmg to wh1ch test form it was on.” ’fhus a

totah of 468 tesd:s were made.
At the .01 Tevel of s1gn1f1 cance, the null hypothes1s was rejected
For' a ]1tt1e over half of the tests it was

about 5.8 percent of the time.,
/unnecess@py to apply %ertson s procedure because the sample est1mates
The observed”

of the Ps 's already satisﬁed%eﬁnequahty When Robertson 5 test was

apphed .the resu]ts wer.e usually hwghl_y nonsignificant.

A
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test scores indichte that therewere two items during each testing period
(six items in all) which did not satisfy equation (1.3). *
» Table 1 shows the observed scores on one of the items on tre final_
exam1nat10n that appears nqh-to satlsf 1.3). On Form 2, for example,
35 examinees 'chose the correct response on their third attempt, of the
item. 'For all four formi Robert;tn s test.was h]ghly 519n1f1cant The
. stfiklng freature of this item 1s_the large ﬁymber of examinees who chose
thé‘correct response onAthejr Tast attémpt. Oné‘possible explanation is
that examinees had misinformatioﬁ relevant to the question being asked,
~and so they'élimtnatEd the correct response from constderation. Unfortun- -
ately, there was no way to verify this.  _ ’
Several of the items for which the null hypothé;is was réjected had
a responsé pattern stmilar to the one shown in Table 1. That is, the
correct response was usually chosen last. Intanothér instance where the

null hypothesis was rejected, the observed frequencies corresponding to

the number of attempts were 20, 49, 33, 30, and' 18, respectively.

-

! - ‘ \ :
R . . 3. STRONG TRUE-SCORE MODELS - -

é@??ﬁ | Next we consider the problgﬁ of f{nding a str9ng true score-ﬁbdel that
o can be used in conjdnctioﬁfwiﬁh an answer—until-torrect scorihg procedure.™
.In contrast to the previous sectlon, only Type II guessing is considered.
i We begln by consfderlng a single examinee respondlng to itgms that repre-
. sent a partlc“Har item poo]. Let © be the proportion of ltems the exam- )
inee knows, and let ri(i=p,...,t-2) be the proportion of items for which
the examinee can eliminate i distractors when the correct respénse is not
‘knoﬁn F]nally let e (j=1,...,5) be the prébability of choosing the cor-

rect response on the jth attempt of a randomly se]ected }tém The situation.




. is essentially the same as in the previous section, but the roles of

" jtems and examinees are interchanged. )
S - —For future reference, we note that -
t-2 '
L8 =t Lo /(t-) (3.1)

. i=0 ) : _

and . . , }
t-i -0 ‘ x .
- 6; = I rj/(t~3) o (i=g,...,t) : (3.2) {_

Let ¥ andy, be the number of items on an n-}tem test for which the
examinee chooses the correct response ongthe first and second attempt

respectively. In Wilcox (1980a) it was assumed that the joint cond1t1ona'l

probability function of ¥q and y, is given by . -
~ N ,

. ' ’ ’ . ]
L ’ N ¥
. nley" e, (1 8- ez)

n°y1"~y2
*{y)l’ y2 ‘ 61’ 92) = yl yz' (n'.yl".yz)! :

(3.3)

¥

z

This <implies that f(_y1|al) is a binomial probability function which, in

* mental test theory, has certain theoretical disadvantages. In practice,

however, this assumption frequeht'ly‘ gives good results. A recent discussion

.

‘of the issues can be found in Wilcox (1981).° »

Note that for the model to hold, we must have

, 612 By 2 o0 20

and so a maximum likelihood estimate of* < is

. .. "E'= (.Yl".Yz)/n, ) -yl i.YZ




* v o ) 7 ta . 'y
) . The goa] in this section is to consider how we ﬁight extend (3.3)

v

to a pdpu}at1on of exam1nees " Wilcox (1980a) suggests that for a pop-

. ulation of examinees, we assume the\aoxnt density of 8y and 85, OF the ‘ RS

301nt densxty of T and 8y belongs to the D1rzch1et family. For the

_former case, tpe'Jo1nt'den51ty is_given by
9 v : .
I’(vl+v2+v3) -1 0.1 1

801> 8) = 5 TT(v,)TCvg) ol &7 (eos, (3.4) 7

-

where vis vé, vy > 0 are unknown parameters. In the latter case we simply

%

replace 8 with 7 in equation (3.4), The motivation fc‘r: (3.4) is that it

~ is the bivariate analog of the beta‘densi'ty which has proven to be useful

in many situations in mental test theory (Wilcox, ‘1981).

. Empirical Results on the Diriqh1et—r£1u1 tinomial Model
For the reasons given above, we pegen by assuming (3.4), and we then
tried to fit the Dirichlet-multinomial model to the final examination
test scores previdusly described. From results in section 2, two of the
7forty'jtems appear not to satisfy the assumptions made under our answer-
ehtil cS??ect séoring procedure and Tyﬁe 1 guessing, and so they were
ehmmated The observed,mial d1str1but1on of Y and Yo for the

remaining 38 1tems is shown in Table 2. * ’ -

It is known that when (3.4) is assumed, the marg1na1 density of (-::1

~ beta w1th parameters v, and vt We tried fitting the observed yl
beta-binomial probability function (e.g., Keats and Lord, 1962). The esti-
-+ mates of v, and votva were 8.645 and 8.2, respectively. The expected frequen-

cies under the model are shown in Table 2. A visual inspection of Table 2

¥




.\suggests that the beta-binomial model gives a reasonable fit to the data,

- Janardan and Pati]L 1971).

distribution of y,, we decided to assume (3.3) holds and that 8, i;;/s

. rA

and a chi—square goodness-of-fit test (Cochran, 1954)‘26hfirms this.
Next we consider the observed frequencies corresponding'to Yo- If
(3.4) is assumed, then the ﬁérgina] probability function of Yy is

[ 4
f(_y ) _ [n, I‘(v1+v2+v3) I‘(_y2+v2)r(n+v1+v3-y2)
2 Yo|  T(vy)T{vy+va) Tlntvi+v,+us)

(3.6)

i:e., a beta-binomial density with paFameters v, and v1+v3.‘ The estimate
of‘v2 was 25.6, and the estimate of v1+v3 was 101.6. Again a good fit to

the data was obtained. However, the estimates of vl; vy and Votvg ihﬁ]yA

‘that Vg must be negative. But the Dirichlet-mul tinomial model assumes

vi>0 (i=1,2,3). We tried instead to estimate the vi's as described in

Mosimann (1962). This yielded 01=6.08, 62=2.37 and 63=3.395 We now have

¥s no longer satis-

admissible estimates of the vi‘s, but the fit to data

factory. Evidently, some other model must Re ys€d to explain the observea
scores. & ’

Beforg describing a model that gives.a ;easonably good fit to the
data, we might mention two otﬁer mode]s@tﬁat were considered but which
gave unsatisfactory results. The first was a negative—mu1tinoﬁia] mode]
(e.g., Sibuya et al., 1964), and the seccnd was a compound negative multi- .

nomial mode] also known as the multivariate inverse Polya-Eggenberger

distribution (Mosimann, 1963; Sibuya, 1980; Sibuya and Shimizu, 1980;

*

A New Strong True-Score Model .

Since a beta-binomial model gives a good fit to the observed marginal
s

‘¢ t
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betaidensity with parameters 8.645 agg 8.2. The problem is to find a
reasonable relationship between 8 andve2 tﬁaf accounts for the observed

marginal density of y,. As noted above, the Dirfchlet-multinomial model,

as well as fﬁbiotﬁgf”ﬁaaéTg,i¥§Wuﬁsatié%é&toty for écébmplishing this

goal. 9

” r
. " N

Our common sense notion is that as t increases, the probability of

guedsing the correct response will also increase. For instance, an ex-

<
amihee with a value for T close to one might-have more partial information
than an examinee for whom T is small. That is, examinees with T close

e

to one,might be able to eliminate more distractors when they do not know

as opposed to examinees for whom < i; close to Jero. We note that Molenaar

(ig'pré;s) has also a;gued’fér thisjao}nt of view. Let's assume for the

moment that this i; true, and consider hd@ we might express this relationship.
After looking at the data, wétdecjdgé‘fb express the assumed rela-

tioﬁship between 1 and guessing in ‘terms of the coﬁditional distribution

of Yy gﬁvent}l. First note that for a specific examinee

: Y e, YY1y
flyplyys 015 85) = (Yz }\W I- Yo (3.7)

“For notational convenience, et g=6,/(1-8,): Gursasdumption about t and
guessing ipdicates'that for the poputation of examineestf is.an increasing .

function of 84 Since oﬁplﬁ;, what we need is an increasing -function that maps

the closed unit interval into a subset of itself. One vay to do this is to

a

use a iinear function of a cumulative distribution defined on[0,17] .. The beta

distribution’is the best known distribution with this property, and so

we decided to cons}der’it for the problem at hand. Accordingly, we assume

v




that for the population of examiﬁees, E( g[al) is givea by

-

£(ey) = cf:l —rf%%%) F S e ' (3.8)

where c, e, r, and s are unknown positive constants to be determined, .and
where O<cte<l.

Henceforth, we assume 8, is completely determined by 6, according to
equation (3.8). That is, for a spécifﬁc e¥aminee,62=(1—el)g(ei). This is,
no doubt, an over simplification of reality, but we want to avoid deriving
a mogel so mathematically complex that it cannot be'appliéd. As it turns
out, equation (3.8) gives a reasonably good fit to the data.

*—'Jﬁext we determined ¢, e, r and s in the manner descr1bed in the
append{x The resu;;;c@eré c=. 25 e=. 25 r=1. 776 and §= 2 278. i

As a partial check on the model, we decided to compare the expected

observed scores of ¥, }o the values actually observed. Td do this, we

need an expression for the margjna] distribution of'_y2 assuming equations

(3.8) and '(3.3) hold, and that 0, has a beta defisity with parameters 8.645

and 8.2. Writing g(el) simply as £ and since 62=5(1-91) equation (3.3) can

be written as o ‘ ‘
Y- Y, . RV
flypsypley) = nteg L[ e(1-6;0] 2 [1-00-6(1-5,)1" 1% (3.9)
and

n!s;)é (1~e1)y2 C 1-g(1-04)] =Y, (
yZ!(n“yZ)!

f(y,le;) (3.10)

'ﬂ
Substituting (3.8) into (3. 10),mu1t1p1y1ng by g(el), and integrating out

[ 4

g(el) yields the maginal density of y,. Symbolicdlly,

. fly,) = £} fly,le;) gle;)de, : (3.11)




where, from preyvious results, we assume

_ 1(16.845) 7.645 7.2 |
(6)) = Faerie(aET G (1-8y) , (3.12)

and f(y,|e,) is given by (3.10). Since % is a function of 0y, it is dif-
ficult to find a closed form ekpréssion for (3.1%). However, for practi-
cal purposes, this is not a serious problem since the integration is

easily accomplished using numerical qaédrature techniques. We used the

- IBM (1971) subroutine DQG32. For those who do not have access to this

subroutine, the necessary formulas can be found in Stroud and Secrest

(1966). The expected scores of ¥, based on (3.12) are shown in the Tast

colum of Table 2. The usual chi-square statistic was found to be 22.9. .
. N

With 12 degrees of freedom the Tevel of significance‘is betézgn .025 énd

.05. -(the that e is assumed knéwn, as is explained in the appendix,

and so (3.11) has three unknown paramenters since (3.12) is assumed. )

We observe that theestimate;of g corresponding to y1=4, 7 and 33
are based on a relatively small number of examinees. In fact, for y74
there is only one examinee and the same is true for y1=33; " Thus, it might
be that £ is unqsually spurious at these points, and this would explain
why We get estiﬁates of & that seem to be relatively inconsistent with
the ‘notion that £ is a strictly increasing function of 8- (See Table A2
in tQE'appen jx. ) | - 7

It is interesting that if we ignore the estimates 9f £ at these
points, we get &=.33, T .88 and §=.909 with e still equal_to .25. In
this case the value of the chi-square statistic is 15.63 and the level
of significance is between .05 and .1. In either case, we get a reason-

able approximation to the data. Note, however, that if we assume random

" 62
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guessing, i.e., & = (1:-1)'1 z .25, as is frequently done, we get a very
poor fit to the data. '

Next we applied the model to the observed scoreﬁryn the second test
taken during the semester. We used the same 620 exaﬁ{nee§. Again, two
of the forty items did not satisfy (1.3), and so they were eliminated.
The parameters of our strong true:score‘model were estimated and found to

N

be very similar to fhe estimateﬂ‘values based on the figgl examination.
Also, é% again got a reasonable fit t;tthe data.

Before concluding this section we note that the above results suggest
we estimate T wit@ %=§1-§2=§1-(1-§1)5. If we arbitrarily set g=(t-1)"1,
we get the usual correction for guessing formula score. - ’

4. SOME APRL;CATIONS TO MASTERY TESTS _

e ]
~

JIn many instances it is a simple matter to exteﬁd-éxigting applica-
tions of the beta-binomial model to the model described in section 3. By
way of illustration, we consider two problems that occur with mastery
tests. “ ‘

A frequent goal of a hastery or criterion—reférenced test is to sort
examinees into one of tQOAéutually exclusive groups. In manyf4;§tances
these groups areidefiped according to whether an examihggjs true—score
¢ is.above or below some kﬁown ;onstanf, say tq- In® the context of an
answer-until-correct scoring procedure, we decide that T 3 1 if for the
examinee being tested, (yl-yz)/n > 13 otherwise the decision t <19 s
_ made. ’ o
For a randomly selected examinee, the probability of making a correct

~

decision about whether t is above or below T, is given by

»

Priy;-y2[ ntgls w2xg)Priy -yo<[nrg ] s<rg) (4.1)

- 63
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vhere [:nrd] is the smallest integér greater than or equal to hro. But
(4.1) is equal to ) | .
T e
zlg,; flys¥pleg)ale;)de; + 40 f(y;.y,10)g(s;)do;

where the first summation is over alt (¥1> ¥p) such that yiyg 21,
the second summation is over_al]_kyl,yz) such that yl—y2<[:nro:]and %
is thi value of 6; such that el-(l-ell§=ro. Thus, the probability of a
correct decision” can be determined once (3.8) is estimated. -

Another approach to characterizing mastery tests is the single admin-
istration estimate’ of the proportion of agreement., We are
given the observed scores of N examinees, and we want to estimate the
probability that a‘randomly selected examinee“ﬁﬁu]d be classified in tﬁé
same manner if he/she took two randomly parallel tests.

Let Z3 and z, be the observed scores corresponding to Y1 and Yo for
an examinee who takes a randomly para]]él test. Proceeding in a manner
similar to Huynh (1976), assume thé density f(zl, zzlel) has the same form
as f(yl,yzlel) which is given by (3.9). Thus, after making the appropriate

independence assumption, the jeint density of Y1» ¥25 295 and Zy is

©Flypaypezys2y) = A Flypsypleg) flzy,z,00,) g(ey)de,

;i;hich can be evaluated with IBM subroutine DQG32. The praportion of agree-

Fent is

zf(.YJ_:.YZ:Z]_,Zz)
where the summation is over all points where both YiY, and 7172y are
greater than or equal to nty, or when both are less than or equal {o nTq-

+
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5. DIRECTIONS FOR FUTURE RESEARCH

We briefly describe some of the problems that mighf'occur when using

¥

-the strong true-score model proposed in section 3. .
) ’ First, the assumption that the marginal probabffity function of ¥4 belongs

to the beta-binomial family has yielded good results to various méasurement

problems when app]jed to real dat; (e.g.; Gross and Shulman, 1980;

Subkoviak, 1978; Keats and Lord,\1962; Lord; 1965). However, as m;ght

be gxpected, this is not always the c;se. Keats (1964a) reporé; a data

set for which the beta-binomial model gives a poor fit, and Keats (1964b)

reports several other data sets for whjch the model gives unsatisfgctory

results. Accordingly, we briefly outline solutions that might be consi-
T P J

dered when the beta-binomial model is unsatisfactory. The'detai]s are

left for future investigations. ‘ ) '

First we note that when trying to, find a probabiiity function that
gives a good fit to data, three of thg best known and most ﬁrequenk]y
‘employed distributions are the binomial, Poisson and negative binomial.
of cou}se, the Poisson distribution usually givesjgood results when applied
 to situations where a particular event occurs infrequently..'Alsé, the
negative biﬁomial distribufion is often-the first choice when it is be;

E ]ieQéd that the Poisson- distribution might be inadequate (Johnson and Kotz, -
1969, p. 125). -

. Suppose vie replace (3.3) with the assumption that for a particular

examinee, the probability of Z=n-y, is .

A

f(z]y) = e y/z! (z=0,1,...) - (5.)

i.e., a Poisson density with parameter y. If we also assume y has a gamma

»




distribution for the population of examinees, the marginal distribution of
. Zz is negative binomial given by .
+2-1 B 11 ’
_ fotz- -
f(z) = ( a-1 JA('E'_H—] [8_"’_]:] . . (5.2)

where o and B are unknown parameters. A;_no;éd i; Wilcox (1981), this

distribution gives a reasonable fit to the data reported by‘Keats (1964a) |

while the beta-binomial model does not. We also note that Johnson and &

Kotz (1969) 1ist several techniques for estimating the parameters in (5.2).

One problem is how to represent the joint distributionﬁg;’yz and z.

A mathematically convenient approach is to assume Yo is also Poisson and

that z and yo are (coqditibna]]y) independent. To allow z and Yo to be

correlated, we might use the bivariate Poisson distribution derived by

Hoigate (1964’. \

. | In principle, at least, a gamma-Poisson model céu]d be applied, and
an estimate of £ could be derived. However, if test scores are highly
skewed, as they are for the data in Keats (1964a), we might get poor
estimates of £ for examinees with Tow ability because thep? are so few
examinees with low ability. Hopefu]]) the se;iousness of this problem will

\ - be “investigated sometime in the futufe. \
- Rather than assume y has a gamma distribution, we might assume it

has a gamma product ratio distribution in which case the marginal proba-

bi]i;y function of z is

(«), (8),

+o)r(8+ '
fl2) = e+ e (6.3).

-




. where o, B, w>0 and . =

v

. — — ——

' . = a(a+l)...(a+z-1), z=1,2,...

(Sibuya, 1979). The d;'stribution (5.3) is known as the\%nverse Polya-
Eggenberger, the generalized Waring, and the negative binomial beta.
The last term is some'tf’mes used because if‘f(z[y) is' negative binomiaT
with parameters o and.p, and if p is beta with parameters w and g, the
marginal distribution of z is (5.3). '

The, rth factorial moment of (5.3) is

’ur = E(Z(r)) " S

~ = (a) (8) /(w-1){")

l where a(r) = a(a-1)...(a-r+1).

< We can estimate w by t% method of moments by notind that

4

My 2y |
£ . -t =l + + . .
{}11 me BT Lt _q B +‘1‘ e e e -
and ’ .
U3 N 3113 "
. — - - = oy, + + +

{“1 ulJm iy i 2a 28 + 4

. The vaTues of a and B can then be determined viaﬂ the estimate c@ul and up.

\Me note that. Irwin (1968) reports some real data for which (5.3) im-

» proves upon the fit obtained with the negative binomial, but the improvement,
S - ' >

_ﬂ.. - 1s not overly strikin'g{ ' - - -

,Q B , | . )
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_ data, and it allows us to correct for guessing wi

e N U A

@ . ~

As for the joint distribution of z and Ygs We might use the multivariate
analog of (5.3). (See, for example, Sibuya, 1980.) ‘Once a is estimated,

results in Mosimann (1963) can be used to estimate the remaining parameters.

6. CONCLUDING REMAR-KS

There are two main points ;:o this paper. First, Wilcox (1980a) made
certain, assMpti ons about how examinges behave when respon‘aing to test
items according to an answer—untﬂ-co:rect scoring procedure. These assump-
tions imply that the cell probab%]ities in a mlejinomial distrl‘butioan must T
satisfy a particular set_of ingquaﬁties. The data used J'_n this esfudy '
suggests that these inequalities will frequently hold.

The second point ds that a strong true-score model was Y posed that
allows the probability of guessing the correct response to var& over a

popu1at1on of examinees. In particular, 1t was assumed that theimbabﬂity

of guessing correct]y is a strictly 1ncreas1ng function of an exafinees

ability level. Furthermore the model gi ves a reasonab]y good fit to our

4

AN

is at random.
Finally, we have outlined some of the potential difficulties with our
proposed model. Hopefully tﬁese issues will be resolved sometime in the

future. N - ) .

L




‘ , s . . APPENDEX L ‘

The pro len?w to der1ve an estymate of the parameters i equat1on

(3 8). To mot1‘vate our so]ut1on we first rederwe the estifmate ‘of the

. " ‘true score’ distribution used by Lord and Nov1ck (1968 chapter 23) The
. po1nt is that the derivation is done in shght]y d1fferent fash1on _than
ié customary i:\them\app]y th1s same techmque to obtain an estimate
. ofgasafunctmnofel»’_ a N ., o

Suppose that on an n- 1tem test, obseNed scores for a spec1fu: e xam-

- "~ inee hgve a probab1hty function g1ven by ’ ' 7
. ( a M. . * - - - . 7///
R f(xlr)&{ eI L ' T

_ . N e o e

c % Fdr a populat1on of examinees, let g(w) be the dens1ty of L and suppose L
. we want to estgmate the first two moments of x. One approach to th1s prob-

'lem is as follows: Let X; (i=1,...,N) be the observed scores of-N randomly
sampled exanﬁnees and let f be the number of examinees wi th an observed

x where of course, zf =N. Temporarily assume that every examinee's true

score w has one of n+l possible va1 ues ; name'ty, —1/n (i=0,. ..,n) The -

; N
. ’ observed values of x suggest that we have sampled f examinees w1t_h true

¢ ) X >
score x/n. , Thus, an est1mate of the probab1hty of choosing .an eXammee :
i
. of n for the ith exammee an estimate of E(r) is - - .

[

{; e having true _Score is h(1r.)=f /N. S1hce s -xl/n is an unb1ased est1mate

“w f N
h(w)-g % X

. = ‘x=0 "‘T ilﬂu\ . S

ance n 1(n 1) x(x-I) 1s an unb1ased estimate of n s this suggests, ﬁor

&

b

s1m1'lar reasons, that we est1mate E(1r with - .
. )g Fy X - -
. N: ."‘x~ ) ! * ‘ -
- N-l g 1 i . ) )
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THEse est1mates of E(n) and_E( ) are the same as the ones derived in
%5 LOrd and Novqck (1968). If we now assume g(=) belongs to the beta family,
we have the1r est1mate of tite true score d1str1bution
=/
In this paper we assume that 91 completely determ1nes £, and that o
g is given by (3 8)’ Temporar11y assume that 91)15 discrete, and that its

possible valdes are i/n (1—0,...,n). Suppose QE‘want to est1rnate the

L N
value of ¢ for the possible’yalues of 8;. We do this as
~
follows.
/ ) ¢

For notational convenience let ¥=yq> and supposef_y examinees get"y
?tems correct on their first attempt of an item. Thus, we would estimate
" that fy examinees haV%191=¥/n- Let h(yziyl) be the number of examinees who
get Yo corrects on the second try of an item given that there were y items

for which the examinee chose the_correct response-on the first try. Finally,

h Jet . +

yoh(ysly) B

“(n-y)h -

i3 ’ A -L\

* where h= § h(yzly). Then & is an estimate.of £ when 8,7y/n.
v - 2 :

[ 24
1

Y2

He i]1ustrate the calculations ‘using a specific case from’the data
" reported in the ﬁeper Cons1der y=11. The correspond1ng Yo va]ues for
. which *( yzly) is pos1t1ve are.y,=8,9,10,11, 13 and 14. - The frequenﬁpes
(the values of h( yzly)) were 4,6,1,1,1,2, respectively. Thus, h=14.

i

Since therearen—38 items, we would est1mqte§(11/38) to be

139/( 038-1%) (14))=.36. -—~.\\\
) Ta?le Al shows the esqimafes of g(el)‘fggvthe final examination test
sco;es used in the papér. The values of £ suggest that £ is indeed an

-

increasing function of 81> but occasionally ¢ decreases. According, we

A

4

\
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' applied the pool-adjacent-vioglators algorithm (Barlow, et al., 1972,

20

&

pp. 13-15) to estimate £ under the assumption that*it is a nondecreasing
4"
function of 8,. The results are reported in Table Al as &.
Sﬁnce there are t=5 d1stractors for every item on the test, and s1nce,

for a spec1f1c examlnee £1is the probab111ty of a correct on the second

-«
LT

"try when the exam1nee is 1ntorrect on the first try, the va]ues of g sug—

> N

gest that examinees with low ability are guessing approximately at random.

We decided in advance to set e=(t-1)'1=.25, and the data suggests that ..

this vis reasonable. Based on Table Al, we also assume that the upper value
of & }s ;50, and so we set c=.50-e=.25. .

There remains the problem of estimating r and s. F?rst, since & 1is
assumed to Be a strictly increasing function of 81> weﬁcann6t*use the same-
estimates'of g forntwo distinct values of 8- Suppose.bli (i=1,...,m) are «/7’
m points where the estimate of £ (the value of E) is the same. For the

purpose of estimating r and s, we rep]ace the po1nts el (i=1,...,m) with
m, 1261 - For example, in Table Al,; we have that g— .305 at 8,=: .24 and .26.
Thus, 1nstead of using the two points 6,= .24 aag .26, we assume 5— 305 at
91=.25, and that a value of ¢ at ef524and .26 is not ave11ab1e. The
resulting values of 8 ahdFthe cer;gspondieg values of E are shown in

Table A2. / - o )

ﬁext set n= (g-,Z*S‘)}:ZS/e/nd note that n= foel —;:—%%i%—)— r-1 (1£f)us 1d /
The value of n corresponding to the values 6, are summarized in Table A2.
They give'us a steP function®approximation to an assumed-cumu1ative beta
distribution. Thus; by calculating P ean and variance of this step func-.
tion, we can estimate r and s (e.g., Lord and Novick, ‘1968, chapter 23;

Wilcox, 1977). For the data uéed here, the estimates were r=1,776 and

$=2.279, respectively.
%
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TABLE 1 -

Observed Frequencies for an Item Not Satisfying (1.3)

: M
‘/:ﬁ' - b . ’

Nu@ber'of Atteﬁpts '
"1 2 3 4 5

b}

1| 19 21_24 36 67

Test 2 | 16 22 35 3 51

- Fomg s 1 o33 21 67
4| 13 18 42 m 52

~
3 * *
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TABLE 2

Observed and Expected Scores on the Final Examination

. Expected Yo

, - Expected ¥q Expected A7y When
Observed | Observed | when y; s | when y, is c=e=,25
Frequency| Frequency| bebi bebi r=1.2776

Score| of Y1 of y, (8.645, 8.2)| (25.6, 101.61)|s=2.279
0 0 2 .00 .37 .62
1 0 5 .02 2.6 3.66
2 0 10 .07 9.5 11.72
3 0 24 .20 .23.19 26.72
4 1 - 34 .48 42.78 47.55

5 |e 5 51 1.00 63.98 69.63 -
6 "6 90 1.87 80.60 86.30
7 9 ° 85 3.20 4 87.85 92.26
8 4 90 5.08 84.26 86.12
9 14 75 \ 7.58+ 72.30 70.93
10 19 64 10.71 56.00 51.89
11 25 46 14.44 39.43 33.91
12 26 25 18.67 25.48 19.84
13 34 ? 23.22 15.13 10.48

14 26 7 27.87 8.31 4.96 .,

15 K/ 3 32.37 4.22 2.17
16 43 1 36.43 1.98 .87
17 42 1 39.79 .87 .31
18 46 0 42 .22 .37 .12
19 41 0 43.54 12 0.00
20 45 0 43.63 .06 0.00
21 46 0 42.51 0.00 0.00
22 40 0 - 40.25 0.00 . 0.00
23 38 0 36.97 6.00 0.00
24 28 0 32.94 0.00 0.00
25 25 0 28.41 0.00 0.00
26 19 0 23.66 0.00 0.00
27 © 27 0 18.97 0.00 0.00
28 13 0 14,59 0.00 0.00
29 11 0 10.72 0.00 0.00
30 6 - 0 7.48 0.00 0.00
31 4 0 4.90 0.00 0.00
32 6 0 3.00 0.00 0.00
33 1 0 1.68 0.00 0.00
34 2 0 .84 0.00. 0.00
35 1 0 .37 0.00 0.00
36 0 0 .13 « 0.00 0.00
37 0 0 .03 0:00 0.00
38 0 0 .00 0.00 0.00

Explanation of nota'c'ion,_y1 is bebi (a,

b) means ¥ has a beta-binomial
density with parameters a“and b.




. R . TABLE Al

= -~ )
N~ ¥y 81=y/n £ g . - )
4 11 .23 .298
o 7 18 | .41 .298
8 .21 .26 298
9 24 0 L3 305
10 26 .29 305
s 11 29 | .36 355
= 12 32 .35 .355
13 34 .37 37
14 .37 .39 385
15 .39 .38 .385
’ 16 42 .42 41
® 17 45 .40 41
18 .47 .40 41 .
18 47 .40 .41
19 .50 .45 43
20 .53 .42 43
21 55 437 | .43
22 58 .48 .44 i
23 61 .42 44
24 63 .43 .44
. 25 66 43 | laa
a 26 68 .50 46 |~
27 71 .42 .46 -
28, 74 -5 .50
29 76 .45 .50 Y
30 .79 .63 50
31 . .57 50 .
32 87 .20 .50




61:

Ly

.19

.62

.44

.76

TABLE-A2

.24 .30

.22 .42 .48

A

.70 .80
46 .5

.84 1.00

.53

-

.34 .38 .45

.298 ,305 .355 .37 .385 .41

.64

.53
.43
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’ ABSTRACT

Wilcox (1981a, 1982) proposed)g- method of scoring and analyzihg
achievement tests and achievement test items that might be used to solve
varioug‘measureﬁent problems including correcting for guessing without
assuming "‘guessing is aé random. The new procedure is based on certain
assumptions about how examinees behave when taking an answer-until-correct
test. Certain implications of these assumptions have been empiric%]]y
checked and the results suggest that Wilcox's model will frequently be
feasonable.' The purpose of this paper is to see whether similar results
will be obéained when a different type of achievement test is used with
a substantially different population of examinees. Included/;s a simpli-

fication of Wilcox's strong true-score model that gives a good fit to one

of the data sets: The paper also notes that a knowledge or random

guessing model is highly unsatisfactory when trying to explain the observed
t ,
test scores. Finally, a new model for measuring misinformation is proposed

and found to give good results with two of the items.

‘flull '

[&]
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Under an ariswer-until-correct (AUC) scoring procedure, examinees
¥

choose alternatives on a'multiple-choice, test item until the correct

resppnse is 1dent1f1ed In -the past this has been'accohp}ished by‘having

' exam1nees erase a shield on an answer sheet which revea]s whether the cor-

rect response was chosen If an incorrect dlternative was”*elected

Ed

another shield is. erased and this process cont1nues unt11 the examinee

-

>

chooses the correct a]ternat1Ve
© Wilcox (1981a; 1982, in press a) oroposed a method of scoring and

analyzing AUC tests that solves various measurehent'prob]ems. These if-

clude correcting for guessing without assuming guessing is at random,

testing”whether guessing is at random, measuring "how far away" ghessinguis

from.being at random, estimating the accuracy of know/don't know decisions

when a conventional scoring procedure is used, and empirically determining

the number of distractors needed on a mu]tip]e—choice test. Wilcox also

der1ved a strong true-score model that“allows the probabf11ty of guess1ng

the correct response to vary over the population of examinees, and the

model also allows true score and the probability of guessing to be correlated.

The new model contains ‘the beta-binomial model (Lord'& Novick, 1968,

chapter 23; Wilcox; 1981b) and the Morrison & Brockway\(1979) model as a

special case. The scoring procedure has been applied to criterion-

referenced tests (zjlcox, in press b, in press ¢} and found toSubstantially
reduce the problems\noted by van den Brink and Koele (1980) and Wilcox (1980).

The purpose of this paper is to emp1r1ca1]y 1nvest1gate certain im-

7 p11cat1ons of the assumptions made by Wilcox, to suggest a new model for

measurzng misinformation, and to indicate a mod1f1cat1on of Wilcox's strong

true-score mode] that m1ght be used in certain s1tuations
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& a ) S = -
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‘ L ... 2 MeTHODS AND RESUTS ' -
_ . . ) ) )
o ' Cons1der a randomly sampi:;}exammee responding to a specific test
’ : ‘ f “item under an AUC scor1ng procedure d.et Ps be the probabﬂ1ty that the

~ v

correct resﬁse s chosen on the ith attempt of the -item, and suppose
1

that éxammees Mho do not  know the corkect resporise can eliminate at most

i t-2 thstractors from co;;\s1derat1on \qa partial information. Once the

- exammee ehmmates q%many dlstractors as he/she can a response 1s
chosen at random from among those remaining. If the randomly samp1ed
" examm'ée Rnows the correct response, it is assumed that the correct alter~
‘ “native is. chosen on the f1rst attempt.” . ,,,' . ‘
." ’ . ) -If ¢ is the prc{portwn of examm‘ees who agqow the correct response,
“and if L5 is' the proportion who can ehmmate 3 d1stracto‘rs>r, then the Ps 's
L . 'C% wr1tt\e{ as linear combinations of the z's. Foa/examp]e, if there
. are t=4 aﬂternatwes, a o -
’ P =c+z.:0/4+z.:1/3+z.:2/2 e T
. 4 T - .
- ‘ pp =7 rlb ‘1./‘“ z)/2 ‘ t R *
DI o/t + §4/3. . -
~ - ) . e ' .o . .
‘ ,‘;? C ,ﬁp4= .;0/4‘ - 5 . | |
{} - and go- # B : 4; R " : -
R c s
o . éé‘ﬁ Py < o . S

Thus, if N exammees are tested,'\and 1f x exammees are cormect on their

-

ith attempt of an.item, {ghe es*tgmate of g is s1mp'(y z = (x -xz)/N

'_ : . Moreowr, the -above resuPtg easﬂy generalize ‘Eo any t (Wﬂcox, 1981a),, ¢ o

and it gan be seen.,tha't , ™~
. . . . " .
p.‘>p2'>.\.‘_>_pt > (2.1)
A ) ‘ _— . - - . .
v e & . Y 7
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. ‘ A test of mchanical abilities was administered to examinees
in Great Brit;%n who were appreximately 14 years old. Each item required

4
the examinee to apply some physical law in order to splve a problem.

’ For example, one of the questions was stated as follows:
' "Where can a jet plane not fly?"
The @]ternatives were (A) over deep'water; (B) over high mountains,
- (C) over mountains on the rﬁoon;(D) very low, (E) 8 miles above the earth.
Re’su]"ts'-}n Robertson (1978) wepe applied to each of the 30 items to
test whether equation 2:1 might ho]d;. The firet 15 items had t=5
o alternatives, anﬁhe remaining 15 had t=3. The x, values are shown in
Table 1. There were 386 examinees, but some examinee; omitted certain
)item‘s. For 20 of the tftems, Robertson's test was not necesse;ry'sinlce@e
| estimated p, values were a]ready_cons_istent with equation 2.1. Among
' ‘ ~ the remaining items two were significant at the .01 level (itemd 7 and
. 30 1n Zab‘]e 1), one was significant at the 05 Tevel item 29), and the

remaining items were not significant at the .25 le\‘?el . '
<o

, . : » o e . ) @
' ' 3. THE MODEL AS A DIAGNOSTIC TO0L »

-

- : Nhen measurmg ach1evement part1cu1ar1y within an 1nstruct1ona1 set-
: >

t
- ting, it would be he]pfu] t&'have some method of detectmg m1s1nformat1orr,

1dent1f_y1ng the type of mlsmfonn)&lon being used, and llhen it exists,
~
measurmg how pervasive th1s misinformation is. Of course the teacher's

Judgment of how the students are behav1ng on a test is annntegra] part of

d1agnesmg misinformation. Ttre results reported here are 1ntended to sup-

p]‘ément or poss1b1_y he]p verify the ‘teachd¥'s view. Included 1s A mod1f1:
I cation of m]cox S model which might be he]pfu];gn this endeavor ‘
‘,. o ‘As ‘noted ih the previous sectien, 1tem 7 proved to be, 1ncons1stent
| : wijp. Wilcox‘s.model, and the natural re(ctidn is to try to determine why

. we got this® resu]t ,+ The sitem was .worded as’ foﬂows'

. . -
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. . Y
‘ = ‘!\A block of iron weighs 40 newtons at room temperature, When

it is heated until it is red hot it gets bigger. How much will '
~ it weigh when red hot? b

Es

_ (A) 39 newtons, (B) 40 newtons, (C) 40.5 newtons, (D) 41 newtons,
and (E) 42-newtons.

It seems reasonable -that some examinees might believe that because the
iFon is bigger when red hot, it should weigh more. Thus, ¢xaminees will
eliminate A and B from c'onsideration and choose from among the brgsponses )
C, D, and E. If the proportion of examinees acting in this manner is
reasonably large, we would expect a disproportionate number of éxaminees

. requiring 4 attempts to identify the correct reSpénse, and this is’consis-
&

tent with the"frequencies*in Table 1.

° 7 .
For the reasons just outlined, it seems that Wilcox's model is inap-

i

p_ro;miate for item ;7',j-a’nd thd® the -foltowing modet be used in its place., ———— " ~ ~
¥ Let ¢t be the proportion of examinees who know the correct response, and
' . suppose that examinees who know are always correct on their first attempt.
Let % be the propor:tion who do not know and choose a]terna{:ives at random, a;md
« et Ly be the proportion o‘f-examjneés who b&liéve that the iron weighs more
when heated because it is bigger. If these three categories are the only .

ones to which an examinee can belong, then

P=t + £,/5 | ﬁ (3.2)
By oyfs o | - (3.3) '
by.= t1/5" - & (3.4)
) v Pg = tp * 29/ . . (3:5)
and ' ‘ ‘ ' s
pg = 5,/5 ' < B EY) I

-

-

!

. s -Nofe that this modet is similar t& the misinformation used gy_ Duncan {1974).

»
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An obvious implication is that §£¥p3=p5. fﬁe unbiased, unrestrfcted
maximum likelihood estimates of the P; 's are p1 .425, p2 106 p3 .101,
Pg=- 244 and p5 124°

Let p be the‘common‘value of P> P3 and Pg under the assumption the
model holds. Then the maximum likelihood estimate of p is just
(p2+p3+;5)/3=.110 (Zehna, 1966). ‘The maximuy, 1ikelihood estimates of

P and Py §}e still .425 and .244 respectively. A chi square goodness-of- -
fit test yielded X2=1.055.witﬁ one degree of freedom, and this is not
significant at the .25 level. Thus, the model is reasonably consistent
with the observed ‘scores on item 7, and the maximum likelihood estimates
of z, ¢, and ¢, are £=.312, 21=.55; and 52=.134, respectively. <

‘ The misinformation model just described assumes that examinees who
incorrectly eliminate response B will choose éhe correct response on
fﬁeir fourth a}tempt. However, a slightly more general mode]‘can be
applied. 1In particular, lethy be the probability that examinees with
ﬁisinforﬁation will choose the.correct response on their fourth attempt
once they learn that re§ponses C, D, and E are incorrec}. Then equati%ns

(3.5) and (3.6) become _ B

Pg = Y%y + C]/S
*
p5 = (]'Y)Cz + 51/5
Usfhg equations (3.3) and (3.4) tﬁkestimate Zy» We now have that
3 5( 106 +. 101)/2 = ,5175. Sub tituiﬁné this result in the remaining

equataons yields ¢ = .3215, ;2 161, and y = .873. ‘{ . .

<

4, M EMPIRICAL CHECK'OF WILCOX' S STRO‘{G TRUE SCORE", MODEL

re "

U]]cox (1982) proposed a strong true-score model ;or answer-until-

correct tests that can be described as fo?{ows: Consider a specific

l -
1 4

. - ’-;hia86 . N
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examinee respdnding to n items. Let‘y. {i=1,...,t) be the number of items
for which the examinee chooses the correct response on the ith attempt
Assume that the probability function of the ¥; 's is multinomial, i.e.,
' . t Y.
f(y y.|e 6,) =n! T o, /y.!
1,..., t 1,10., t .'i=1 i yi.

where the ei's are upknown parameters, zei=1, and Zy;=n. Wilcox assumes

§that for the population of examinees, the marginal distribution of yl is

beta-binomial given by

o B(r+y,, nts-y,) '
o - [;1} B(%‘,S) : - (a.1)

where r>0 and s>0 are yﬁknown parameters, aﬁdé‘is the beta function.
Note that this assumption has proven to be usefulhwhén addrgsstng various
measurement problems (Wilcox, 1981b)..

Next let g=62/(1—61).’ Wilcox assumes that examineey with high ability
are more likely to guess the\torrect response when they”do not know. This
assumption was expressed in térmt ok & By assuming that for the pdbu]dtion
of examinees, it is an increasing func ion of 8- - }n particular, E(g[el)

is assumed to be given by

_ 1L
1 I‘(v1+v2) "1 1 Vz q - -1
ot 9 e
v ) " b - !

L.

L

where c, v; and v, afe unknown parameters sat?sfyingl0595}-(£~1)i}ﬁ

v1>0 and v2$0. Stnce for a specific examinee

S o *




E(yolyy> 095 85) = &,
it follows that k\*‘ "
Eo(y,lyq) = E(zly,) - (4.2)
LY
where Ee means expectation over the'population'bf examinees (i.e., over the

joint distribution of 8, and 62). This last result leads to an estimate of

.G vy and v,, and the details are given by Wilcox (1982).

First we tried fitting Wilcox's model to the items having t=5 dis- .

tractors As already po1nted out, one of these items appeagx not to

sat1sfy equation 2.1, and so it was e]inﬁnated. For the remaining 14+items,

3

the parameters in equation 4.1 were estimated to be r=6.565, and 5=6.487.
The observed and expected frequencies aFg&;hown in columns two and three

of Table 2. As’can be seen, there is close agreement amongythg-corres—

ponding values, and a chi-square goodnesslof-fit test is highly nonsignificant.

Note that -the items with t=3 alternatives could have been included, but
fhey were analyzed separately in order tg illustrate a simqﬁification of
\%h\\model that might be usefu] in certain s1tuat1ons 1
Next, c, vy and v, were estimated to be ¢=.5, vl 1.2396 and v2 .5697,
The model gssumes that for every examinee 92=(1-el)€ where £ is given by

equation 4.2. “This implies that the marginal d1str1but1on of y2 is

) - - e .
f(yz) = jﬁf(yzlel)g(el)del, ’ (4.3)
dihere > 1 - ‘
: _. nl - .Y2 . n-y
U loy) syt (o) -(-ape)™2 - (a)




1 .
i . andlwhere from previous results, g(s 1) is assumed to be a be'ta distribution
w1;h parameters #=6.565 and §=6. 48} Thus, a check of the mode] is obtained &
by determining whether the right-hand side of equat1on 4 3 gives a good
approximation to the observed marg1na1 distribution of y2 Equat1on 4.3
was evaluated with IBM (1971) subroutine DQG32. The observed and expected .
{alues for Yp are shown %n Table 2. ;As can be seen, edbetidn 4.3 gives: '
a reasonably good approximatidn to‘the observed frequencies; and a chi- »

square test is not significant at the.05 level.

é A Random Guessing Model , *

It is interesting to see what héppens when a random guessing model

is assumed to hold. The expected frequenc1es for _y2 were computed, and .

they are shown in Table 2. It is clear that a random guessing model gives
- . totally unsatisfactory results, and a goodness-of-fit test is highly
significant. This result is consistent with resul®s in Wilcox (1982) as

we]i as Bliss (1980) and Cross & Frary {1977).

‘Analy%is of Items with t=3 Alternatives

The analysis of the items with t=3 alternatdveg reveals that in some

*instances, a simpler, version of Wilcox's model might‘ed. The motiva-

&

- tion for this podification arose as follows: When estimating c, Vs and Vos ¢
the value of ¢ is estimated at each of the Y1 values, and it is assumed

that these vaiues are strictly inEreasing‘ For the items having t=3 “

alternatives, the estimates of £ correspond1ng to _y1 2(1)15 were 578
.577, .654, .615, .582, .564, .448, .521, .52, .636, .595, .552, and .57. ™
There were no cases de’yl=O or 1. If the estimation procedyre used by

Pl




. Wilcox is applied to these val ueg,‘ the results indicate a slight increase
in £ with increasing values of ¥q» but the increase would seem to be too
small to be concerned about. This suggests that a simpler model be
considered where the £ values are replaced by their average which is £=.547.
Thus, for a specific examinee it is assumed that 62=.547(1lel). Next
rép1ace (1—61k vﬁtﬁ‘.547(1~61),in equation 4.4, and replace f(yzlel) in
‘equation 4.3 with the resulting expression. Again g(el) was assumed to be
a beta distribution, and the estimate of the param;fers was found to be

>

r=5.9877 and'§=4.5207. The last two columns of Table 2 show the observed

and expected freq&encies of Yoo and the level of significance is greater

/\ than. .1. ) e

-

. - , k
© e — - - CONCLUDING REMARKS - -~ ~~ - =~ - -

. ' Empirical‘invesﬁgations (B]i?s,, 1980; Cross & Frary, 1977) have shown
that a random guessing model may be untenable, and it has been argued that

such an assumption wif] frequently be unrealistic (e.g., Lord & Novick,

v1968; p. 309). A1l indications are that guessing will be higher thén ran-

dom, and the strong true-score model described here is tonsistent with

these resylts, Moreover, our common sense notion is that guéssing should
not be ignored, and in certain situations analytic results show that guess-
ing can be a serious problem.(van deft Brink & Koele, 1980; Wilcox, 1580)?
.Sﬁncé all indications are that;the assumptions éBout how éxaminees behave
- - under answer-until-correct tests will frequently be c9n§isggnf3with ob- -

served test scores, perhaps it is now possiblg to deal with guessing in

Iy

-4
a more effective manner.




Another important point made by a referee is that investigators might
want to collect pretest data under an AUC procedure even if the procedure
is not to be used in operational versions of the test. Various possibilities
are'discussed elsewhere (Wilcox, 1981a, 1981c, in press a). These include
the ability of estimatjng test item accuracy under convenf{onal scoring
procedures, and estimating the effectivehess of the distractors. If

. these values are judged to be too small, it might be possible to correct
the pro%]em by modifying or replacing some of thgp?%stractors. L

Another situation where AUC tests might be useful invo]Qes the
biserial correlation. When estimating this value, improved information
about ¢ mighf be useful (Ashler, 1979).

A third possible application is the empirical derivation of a formula
(Wilcox, 1982). Once certain parameters are estimated),this scoring
forfiula can be used when the only available information is an examinee's
observed number-correct score. . < ' !

Finally, it is not being suggested that Wilcox's modé] be routinely
applied. Insteaa, it is being argued that if the underlying assumppions :
seem reasonable, and if the observed test scores’ are consistent with '5/
these assumptions, théen Wilcox's modei might be conside;%d when 3coni?g

[}
and analyzing a test.




k4
REFERENCES -
L8 .
- Ashler, D. Biserial estimators in the presence of guessing. Journal of

Educational Statistics, 1979, 4, 325-356.

Bliss, L. B. . A test of Lord's assumption regarding examinee guessing behavior
on multiple-choice tests ysing elementary school students. Journal of

Educational Measurement, 1980, 17, 147-153.

Cross, L. H., & Frary, R. B. An empirical test of Lord's theoretical
results regarding formula-scoring of multiple-choice tests. Journal

of Educational Measurement, 1977, 14, 313-321. 1

Duncag, G. T. An emp{rica] Bayes approach to scoring multiple-choice tests

in)the misinformation model. Journal of the American Statistical

Association, 1974, 69, 50-57.

IBM Application Program, System 1360. Scientific subroutines package

ual. "White Plains, NY:

(360-CM-03X) Version I1I programmer’
¢ ] \_ ' R

. IBM Corporation Technical Publications Depajtment, 1971.
Lord, F. M., & Novick, M. R. Statisti

1 _theorfes of mental test scores.

« Reading, Mass: Addison;Wes]ey, 1965?“"

Morrisons Dr G., & BroekWay; 6. A modified beta-binomial model with
e .
applications to multiple choice and taste tests. Psychometrika,

\
i 1979, 44, 427-442 /
t

- z "r/ ) . . . N
Robergson, T. Testing for and against an order restriction on multinomial

r\ - parameters.. Journal of the Americqn Statistical Association, 1978, .
RN 73, 197-202. b :} i
van Agn Brink, W. P., & Koele, P. Item sampling, guessing and decision-

‘making in achievement testing. British Journal of Mathemaiical and

Statistical Psychology, 1980, 33, 104-108. ] d

-

' 32




12

*

Wilcox, R.R. Determining the length pf a criterion-referenced test.

Applied Psychological Measurement\ 1980, 4, 425-446.
Wilcox, R.R. Solving measurement proples with an answer-until-correct

‘scoréng procedure. Applied Psycho]égical Measurement, 1981, 5

to appear. (a) .

Wilcox, R.R. A review of the beta-binomial model and its extensions.

Journal of Educational Statistics, 1981, 6, 3-32. (b)

Wilcox, R.R. A polarization test for making inferences about the entropy

of multiple-choice test items .~ Anpublished technical report,

Center for the Study of Evaluation, UCLA, 1981. (c)
Wilcox, R.R. Some empirical and theoretical results on an ansWer-unti}r

correct scoring procedure. British Journal of Mathematical and

Statistical Psychology, 1982, to appear.
. T AY
Wilcox, R.R. Using results on k our of n system reliability tosstudy
and characterize tests. Educational an&XP§z§hologica1 Measurgment:

) .
in press. (a)

. M e .
"Hilcox, R.R. Determining the length of mu]tip]e-choice criterions

referencegftests when an answer-until-correct scoring procedure is

used. Educational and Psychological Measurement, in press. (b)

Wilcox, R.R. A closed sequential procedure for answer-until-correct fests.

Journal of Experimental Education, in press. (c)

1




. TABLE ]

-~

4

to Get the Correct Response

Humber of Examinees Meeding i (i%1,...,t) Attempts -

RS .
TTEN 1 > 3 & 5
1 332 38 10 3
X 2 09 9 60 " 74 49
3 233 69 47 24 13
4 172 8 62 40 | 23
.51 18 8 47 45 29
6 +250¢ 8 31 14 11
& 7 168 4 39 94, 48
: 8 195 8 33 3 37
S 174 .69 55 .43 45
10 46 _ 70 .8 = 58
11 290 3 25 16 .21
12 203 .76 50 30 27
13 135 106 64 42 3%
T . 14 231 70 -3 - 28 ~ 23
. 5 72 9% 6 18 13
o 16 245 90 49
17 Y168 125 91
I8 272 713 38
19 228 140 14
20 272 54 56
21 220 8 72
22 257 8 37
. 23 308 41 22
24 151 111 - 83
5 121 130 119
S 21 88 38
L 27 23 79 50
28 23 76 54
T 29 101 . 121 140-
.30 94 168




Value t=5 - t=5 _ Guessiag t=3 t=3, £=.,547
0 23 - 2851 ~ 68.16 16 . -13.24
1 64" 70.77 115.82 33 35.25
2 - 94 99.78 101.73 54 « . 54,24
3 82 , 20.0%4 60.G3 ' 70 62.97
4 . 72 . 57.65 £ 26.29 , 45 . 58.97
5 31 27.54 8.91 48 46.57
-~ 6 12 ¢ 10.09 2.39 -~ 36 . 31.45
7 5 7 2.87 _ .51 17 18.28
8 1 . .63 .09 8 9.07
9 . 7 3.33

10

TABLE 20~ —

"Observed an Expected Frequency

) B Expected ¥y ;
Observed Yo Expected Y2 Frequancies Observed Yp Expected Y2
Fraquencies -Frequencies Under Random Frequencizs Frgquencies

2 1.3¢
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» .

’\ For a specific achievement test item and a randomly selected examinee, -

let p be the probability of correctly determihing whether the examinee knows

5]

the cogrrect response. ‘Variaus techniques have been broposed for estimating
‘ ¢
p. The purpose of this brief note' is to describe and illustrate how results

in the engineering literature on "k out of n system reﬁabﬂity“xcan be

‘used to study and characterize tests based -on the estimated values of p.

A

In particular, we can empirically determine the minimum number of distractors

.

required for multiple-choice tests. If we estimate p wi/t‘fﬁn answer-until-

' . . . N L
correct Scoring procedure, we can also determine the minimum number of

. e 3
exanfinees needed to be reasonably certain about whether y is less than or

1 *

greater than some predetermined constant, where Y=Xp1. and P; is the value r
of p'for' the imcite’m on an n-item test. In otheywords, we can determine
whether the expected number of correct decisions on an n-item test is

reasonably large. . . .
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Sugpose we have a mu1t1p1e-ch01ce ach1evement test item that represents

part1cu1ar sk111

he/she has acquired the-skill.

If an examfnee chooses the correct response, we dec1de

As indicated in Section 2 of this paper,,,

there are several methads for estimating the probability that for a typical

examinee, we correctly decide whether the skill has been acqu;red. Usually

however, these techniques have not been used to.analyze tests\ffhat measure

n skills, and they have not been ysed to empirically determine how many

distractors we need for an item.

The purpose of this paper is to illus-

trate how results in the engineering literature on "system reliability"
p)

can be used to help solve these problems.

will need.

Included is a slight extension of an existing theorem which,'a;

Section 3 reviews the results we

will be illustrated, is useful when addressing certain measurement problems.

. , '
Section 4 describes §ix examples of how these techniques might be applied..

- A
Methods for Estimating Item Accuracy

¥

Under normal tésting»procedures it is impossible to estimate the pro-

bability of making aﬁ/?;EEFFEEf“Hécision about whether an examinee has
acquired a §kill.

of guessing the correct response when an examinee does not know, nor is there

In particu]ar,‘there is no estimate of the probability

an estimate of the probability of knowing and being incorrect because of

carelessness or a momentary distraction.

under which these probabilities can be estimated.

One approach is suggested by Wilcox (1980).

choice test item gijhfi alterpatives, one of which is correct.

.

Consider a multiple-

‘ For a popu-

However, there are circumstances

>

'

2 ~—
-



and- let ci(i=0,],,..,t-2) be the proportion of examinees who ‘do not know
but who can eliminate i distractors. Suppose an answer-until-correct scor-

' ‘o 4 / . . .
ing procedure is used which means that examinees choose alternatives until

<

’ . . pa &
the correct one is identified. If examinees who know are always correct

on the f1rst choice, and if examinees who do not know guess at random from ¢

among those distractors they cannot e%1m1nate, then for a random]y selected

examinee, the probabi]ity of a correct on the first alternative choseérais
— 4 ‘\\

t-2 ’ ~

_ z+ I cJ/(t -3). \

. - 3=0 -
The probabj]iﬁy of a correct on the 1E£ alternative chosen is
’ ’ , '

” N t-1i .
c Twosor g /(t-3). (i=2,...,1).

v T - s 3 . i

\ ! 370

.Suppose we decide that a testee knows the answer if the first alternative
chosen ,is correct. The probébi]ities of the four possible outcomes are

shown.in Table 1. . . : T A

*
S et prfe

TABLE 1

Four Po;sible Qutcomes of a Randomly Selected Examinee
- Responding to an Item -

: Decision
Knows . Does Not Know '
Latent  Knows ' g 0 L
State  Does Not Know X
- T2 ifé B

e = e - PSS - - ;——_q‘-‘—-——l — e e s o e e - - — ——




“is at random, i.e., gy = 1-z.

-

' L f

. Thus, the pfobabi]ity of a,correct decision for é randomly se?gcted_examinee

is

» e 4 .

It cantbe shown that for fixed ¢, p attains its maximum value when guessing

i
/

For a random sample of N examinees,'iet z, be the number of timés
a correc§ response is given on the iEn try. Then (z]—zz)/N, and (n—zz)/N /
are unbiased maximum likelihood estimate of ¢ and p respectively. Unbiased
maximum 1ikelihood est{métgs of the';i's are alo readily obtained as is
illustrated by Wilcox (1980) for the 'special c;se t=4. .

Another way to estimate the accuracy of decisions about whether the

typical ekaminee has acquired a particular skill is with latent structure

models. Macready and Dayton (1977) illustrate this for the case of equiva-

lent items. Two items are defined to be équiva]ent if & randomT& sampled
examinee knowi both‘or neither oge. In_addition to inc}uding guegsing,‘the
model used by Macready and ®ayton allows for the event of an examinee
knowing and being incorrect. . ' . ,
There are four methods for checkﬁng the assumptioq.of equivalént items °
(Macready and Dayton, 1977; Har;ke, 1978; Baker and Hubert, .1977; and Wil- |
cox, in press, a). If theAéssumption of‘equivalent“items is contraindicated
by the data, we might §t111 use a latent structure model, but one based on
less stringent assumptions. In particular, we might assume items are hier-

archically related which coptains the assumption of equivalent items as a

»




‘special case (Yfilcox, in press, b).  Dayton and Macready (1976) describe
a general approach to hierarchicé]]y related items.

}

3. Review of "Reliability” Theory
! ' \

Suppose a test measures'n skills. ,JFor a randomly selected examinee
th

16t xi=1'if a correct.decision in made about whether the i— skill has been

I . - T 2 e s ‘
acquired; otherwise, x.=0. Also, let p.=Ex.§were thé expectat1on is .

taken over the popu]at1on of examinees. As noted in the previous sect1on,

p; can be est1mated under various c1rcumstances. We defire the k out of n

reliability of a test pk, to be the probab111ty of making at least k correct

decisions for "d randomly selected exam1nee Symbolically, pk=Pr(zxi3k).

Some readers might object to defining test reliability in the manner

.

described above since it differs from the usual definition of reliability

d - - N - - - . 4
in classical test theory. The reason we do so is because it is consistent

with the ysual definition of system re71ab111ty that is &pplied to eng1neer1ng

problems (e.g., Barlow and Proschan, 1975 Marshall and Olkin, 1979, p. 402).

The purpose df this section is to Tist some results about p,. Except

%

for Theorem 6, these results are not new, but they are not typically apblied

to measurement problems, and so we describe them here for the convenience
of the reader. )

First we note that if x; is independent of X5 i#3,
n P ’(]-pi) R )

where x =(X],f..,xn) and $=Ix,. For some cases, (1) is easily computed,

»
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~ ¢ . . e

for example, when-n is sm&]] or k=n, but frequently P is difficult to

calculate. Another and perhaps more serious problem is that the X3 s might

not He 1ndependent In this case, deterfhn1ng Py is more difficult. For

these reasons, efforts have been made to‘ftfd ways to approximate P> and

-

to determine its properties.
Thforem 1. Pr is sf??ht}y increasing in each Pj- A proof is given
by Barlow and Proschan (1975 p. 22). , ) i\

Theonem 2. If: cov(xi, xj)gp, i#j, then -

-

n n )
" I opy<p, <1- 1(1-p;) . .
j=1 3 k =7 i !
This is a special case of a result given by Barlow and Proschan ¢§975,'p.
Theorem’3. If cov(xi,‘xj)zp, ¢ )
' . i
max . 1 p.%i 5p>
x:S=k i=]

This followg\from Theorem.3.9 in Barlow and Proschan (1975, p. 37).. o
Defiaition' For any vector a, 1et aey) 2 a(z) -+2801) be the e]emen

of a wr1tten in destending order. The vector a is. saxd to be maJorﬂzed by

‘the vector b (b majorizes a) if

(2)

el

~

34).

ts
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Y
b weakly majorizes a, which we write gs?Wg-

Theorem 4. Suppose we have two test forms where P; is defined as

e

¥
before and P; is the corresponding probability on the other test. Suppose

- X is independent of xj, i#j, for both test forms. Let ri=-1og P;» and

* * § *
] rif;lgg>pi, where Tog is the natural logarithm. If r <"r, then

[ * ’ '
pk (B ) ih( (E.) . ) %
"?. . ’
. wit@ equality holding when k=n. A proof is given by Pledger and Proschan
. (1971). ? ,

) £

o
. _ ny. X n-x
A corollary of Theorem 4 is that pk(g) 3pk(pG,...pG) = f (x)pG (l—pG)

. 1 x=k.
B n — .
for any p, where Pg = n Ps N is the geometric mean of the ﬁi's: g ’

Theorem 5. Pledge; and Proschan (1971) also show that'if Ri=(1-p§)/Pi,

* * * * m . .
and R; = (1-p,)/p;, then R <'R implies that V.

o () <o, (p)

M

A
L 4

: ) * “ ’
We should remark that 15?; does not imply that_ﬁgTB , nor is the

4

converse true.
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. Theorem 6. letr, r, R and R* be defined as in jtheorems 4 and 5.

T *"Suppose X, '

; is independent of Xj’ i#j, for both test forms, that r does not

- * : * -
majorize r , but that for some ¢, r>"r’= r - ¢, where c;> 0(i=1,...,n).

.

* *
" Then pk(g) yk(g) for any k.* The same #is true-if B>_mg_‘= R - ¢ for some c,
/

.>0, . '
C; > ' ,

Proof: Theorem 4 Jays that r>"r” implies that pk(g) zpk‘(p_‘). Also,
* *
r°’=r - c means that p]f = Py + bi for some appropriately chosen b,;_>_0,

where p; is_the P valug corresponding %o r;. Thus, by Theorem 1,
* ) , *
p, (7)>p, (p ). The proof is exactly the same for R and R .

Theorem 7. 1If X5 is independent of xj,-i#j, Hoeffding (\1956) shows that

»

’ . ‘ ok(g)zt()p(l_)“,k:ni
. . j=k
' . and _ ] ;
& .
n - n-; _
ok(R)f_?_:(}p(l') > k=1 >np
J_k ) _/
where p = n‘12p1:. (See, alfﬂ,/(;'leser, 1975.) .
. ‘ A
e .. ‘ . > -
" 4, Applications . RN
Y ’ \
As prev icated, the purpose of this paper s to illustrate
‘ how the above rems ban be applied to certain measurement prob]ems‘

This we now do. if »
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Example 1: Suppése mul tiple-choice test items are Being useq, and that

we want . b

’ ’ l *

pg 2 P &)

>

*' . ‘(
for some positive P <1. What is ghe minimum number of distractors required.

To solve this problem, suppose Juessing is at random, and that an .

.

- ' ’4\ - - )
examinee behaves as assumed under the answer-until-correct scoring procedure
described in Section 2. As was pointed out, for fixed z, p; Ts maximized

when guessing is at random. Furthermore, the value of p. is an increasing
i

Ffunction of ;(1), the proportion of examinees who know the answer to the 1Eﬂ

’ §I(1)
that minimizes p:. This is c(1) = 0(i=1,...,n}. Suppose x. is independent
i i

item. Since for any 1, is unknown, first consider the value of C(1)
of xj, i#j. If the same number of distractor% is used for each item, then

P1=PZ=---=pn=p, say, and
. ~

< B R R L W
Let Po be the-value of p for which (4) equals P*. Then the number of re-
quired distractors is £ = (]—po)-] since, when gﬁO,-p=1-t-]. For example,
if P* = ,93, n=10, and k=8, then Pg = .9 and t=10. Of course, ihj$ractice,
this is an~extreme1y large number of distractors. However, c(i)=0 (i:],,,,,ﬁ)

is highly unlikely, and so in reality, a smallér number of distractors

would be needed when guessing is at random. ) ‘ \

AL
L
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To illustrate Theorem 3, consider the more genéral case where
cov(x > X )>0 If again p1=...:bn=p, to guarantee. (4) ‘ve determine p such
that p P Froh Theorem 3 it follows that the required number of dis- 7
tractors is (1 p) If, for example, pr= .93, n=10 and k=8, then ( 99]) .
and so t=111. To re1terate this value of t is based on an unrea11st1c
va1de‘for the c(]) 5. .More rea11st1c s1tuat1ons are cons1dered below.
QOur goal here is to 111ustrate Theorem 3 in a simple manner.

Example 2: We considerhfhe same situation as in example 1, but we
gssume informétidh about the ?'5 is available. More specifical]y,'suppose
the z's have been estimated to be'c(laf,s, C(Z)F.G, c(3)=c(4):.75, c(5)=
c(6)=c(7)=.85, ;(8)=.9 and c(9)=;(]0)=.95. To.determinq ?ﬁe minimum number
of distractors, again assume guessing is at random,that cov(%jzxt)zp, and k=8.
To simp1ify the illustration, suppose the same number of_distractqrs iy'u?
be used fo; each item. Since p; is an increasing funcfiog of “c, and sfice

. when guessing is random pj=c+(1-c)(1—t"]), we have, by an application of

" Theorem 3, fhat a lower bound to Pg is

. - il

(.75+.25(1-t"]))2(.85+1..5(1—t']))3(.9+.1(1-t~1))(.9§+.05(1—t'1))'2 (5) .

e
- N bl

-

‘Thus, we can guarantee pa_P by finding the smallest t such that (5) 1s

. éreater than or equal to P . Table 2 gives the va]ue of (5) for=t=4(1)8.

~

TABLE 2 | . ‘ !
Values' of (5) for t=4(1)8 and k=6, 7 and 8 ’ A ,
t /
\ 4 5 6 71 8
8l.745 .79 .82 .8 .87
k 7|79 . .83 .85 88 g9
- gl.85 .88 .90 .91 .e2 \ S T

106
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These results are more encouraging than those in example 1, but having more
than 4 or 5 equally attractive distractors prqmise§ to be difficult in prac-

tice. o

We note that the lower bound to Py ihQEE?orem 3 can be very sensitive

to &he value of k. Table 3 also gives the value of (5) for t=4(1)8 for both

k=7 and k=6.

Next suppose that X; and xJ are independent, i#j. -From the corollary ,

to Theoremfz a lower bound to pg s - S e
|
o 10
X 1* 10-x
v , r (10 pX (1% py? 6
v=g X G G .( )
3

S1nce we are still assuming guessing is at random P; =z+(1-z)(1-t 1) -and

equat1on (6) is easily calculated for any t. The values of Pg corresponding

to t=2,3,4 are respectively, .894, .942 and .948. .Substituting”these

ya]ues in (6), it follows that for t=2, 983f9]5’ for t=3, 983?983’ and for
);=_4’, 0g.987. . ‘




and 4 are\.8975, .9317 -and -.9488, and the resu]t1ng Tower bounds th pg

are .925, 973 and .988, respect1ve]y As is ev1dent,,the lower bound
to pg for the ‘casé ts2 is.higher than it was using the corollary to Theo rem

\ 4, but for t=3 and 4, the’ lower bounds/are about the S amax, | ’

In contrast to the previous i]]uétrations, testlatcuracy is very high
. iusing a "normaﬁ" number of distractors. An interesting feature ot the '

1]1ustrat1on just g1ven is that th%re seems to be l1tt]e reason for us1ng
t—4 d?stractors rather than t-3 since, the 1ncrease in Pg is m1n1ma1 at” : .
best. Note however, {hat t was derived under the .assumption of random

~ -

guess1ng If~exam1nees _have part1a1 1nformat1on, the P; values will be
o —_— .

Tower wh1ch in turn w11] lower the value of Pg- As mentioned’in sect1on
2, an answar-until-correct scoring procedure can be used to check for
LJJ part1a1 1naormat1on and to estimate the P; 's. , CT
*Examg]e 3: The situation is assumed to be the same as in example'?2,
* except that we want to allow for the possibility of having a different p
number of distractors across items. Assum1ng X3 is 1ndependent of xJ, i#3, o -
the simplest approach to guaranteeing p8_ is to detewmine the sma1]est ‘

t for each item such that pﬂZfP )]/" where potws the value of Pg in.the
ﬁ

corollary to Thegrenm 4 such that Z ( )PG(1 PG)n Xs p”, If, for example, <
p=.95, po=-915- Ptfb]]ows that for t=.5, .6, .75, .85, .9 and .95, the ’

\

" corresponding values of t are 6,5,5,3,2,2, respectively. (We assufie that :a

: . ,
a minimm of t=2 distractors,’are used.) . .
. \‘ ] £ ) ) . ,- ;‘“"'

For t=3 inlexan]e 2, assuming x; is independent of X;» it s and that

iy
wy,

guessing is at random, p = (.834, .871, .92, .92, .952, .952, 968, .984, 1.084)
. \ - .

£

BN
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im{ﬂying that pG= .942 and S0 pg>. 983. in example 3, nsing‘ the igdicated _
et values' p is given ‘Dyp =(.917, .92, .95, .95, .952 : 952\ .952, .95 .975, .975),

.
L -

Pg=-959, and so 98_.993. This suggests that the k out of'n re11ab111ty »

.with the latter test form is higher than the ﬁrst'—-but this has not been
established. Tpe,coro'ﬂary to Theorem 4 gives a lower bound to Py> but it L

has not been shown that the lower bound indicates which-test form is more

.

. ' ’ accurate. If it had been true that p‘>p (i=1,... ,’10)‘ the test form in
- example 3 would be more accurate according to Theorem 1, but it is. evwdent

. that this is not the case. However, by a_pp'lymg Theorem 6, it can be shown

s

s e, that-the latter test form has a higher Value for Pg-
’sExamp]?t‘l:— As mentibned in sectior 2, Macready and Dayton (1977) - e

examine a ‘latent structure model that Ean be'used to estimate p. Included

.

’. ' in their discussion is a so'lution to the foﬂowind problem: When mea%uring
a particular sk'iﬂ how many' items are needed, and what passing shou]d we
us)er so that ‘the probab1hty of mak1ng a Eor\ct decision about whether a

typ:ca] examinee has acquired a particular sk1\l i.e., the va]ue of p, is

- reasonably close to one. N > ‘
As before, let L.be the.proportion of examineeg who have acquired the
skill 'and for a .rantomly selected examinee, let &=Pr (in.Cor‘rect response|

+

w"

- examinee knows) and let p=Pr{correct responseiexam nee does not know)

.+ Suppose,n equivalent items are to be used, to measure a(skﬂ]. WE;:dy

% . _and Day(ton provide a table of n values and passing scores correspsading to

>arious values of z, a, and B. * For example,(‘i%sﬁ a=105 and g=.3, and

v

if we want, w1th probabﬂ1ty at least\— 95 to correcﬂy determine whether '

:

a randome selected exammee has acqui red the skill be1ng measured Table I
L 4

\
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in Macready and Dayton (1977) says we need to use n=4 items withra passing
score of 3. ) i o -

L4

&

-

- of making at least 3 cotrirect decisions for the four skills is .97.

Uéiii‘the—;eQUth in section 3, we can extend the technique proposed
by Macread} and Dayton to’ tests bhat measure m skills. Ae a simpLé ii1u57' 4
tration, suppose we have 4 sk1T]s, and the number of 1tems (and passing

score) corres;%nd1ng to these four skills are 4(3), 5(4), 4(3) and 7(5),
respecﬁiveTyZ For the'first skili; for eiample, we have four items, and

if.an examinee gets at least 3 corFect, we decide he/she has ecqu%red the.

skill. Further, suppose that the estimetion procedures described by Mac-

ready and Dayton are applied, and the four est1mates of ¢ are .4, .5, .6,

and .75; the cgrrespond1ng estimates of a are .05, .1, .05, and .13 and

the estimates of éyare .2, .3, .4, and :4. The miqigﬁ% probabi]ity of a

cogrect decision associated with the four skills can be read.from Mecready

and Dafton’s Table I (dssuming a loss ratio of one), and they are .95, .9,

.9, .95. Making the appropriate independence assumption, Theorem 7 says >

Ehat; for a randomly selected examinee, a lower bound to the probab{lity )

»
e,

2, ' .
: Example 5: A proficiency test is designed to measure m skills. For

each skill, a decision is made about whether an examinee knows the correct

&
L=
2

resgonse. How many items per skill dg_we neéd so that for the m ski[l;, >

- at least k correct decisions are made for the typical examinee.  This pro-

blem is similar to previoué illustrations. It can be solved using the
4 -

results in section 3 in qonjunctionawith the techniques described by Mac-

cready'and Dayton. .




o S ' 16
‘ ’ Example 6: Suppose every examinee behaves as described in sect1on 2

. " " under the answer-until-correct. scormg procedure, and that X3 is mdepen-
— A -

dent of X5 id. Let y=XEx]-'—’):p]. be the expected number of correct deci-,

’

4 . . : . ‘ P
sions on an n-item test, i.e., the number of times we expect td correctly
- 4 . <
~ determine whether a typical examinee knows the answer to an item.” He . /
consider the problem of determining whether vy is reasonably large, saj'

greatér than or eqﬁal Yg> @ known constant. For a random samp]e of N
’ F N -
r examnees, let w, J—O if the jth examinee is correct on the second attempt

-~ *

TJ

and,so we decide Y>Yq if ¥= zzw /N>yo, othen-nse we defide y<yo How
'IJ
large must N be so that we can be reasonably certain of making a correct

of the ith 1tem, otherw1se w:.=1. From section 2, Ew “p R J 1,...,N €
b Y

decision about whether y is greater than or less than yo’
Note: that the situation is similar to one considered by Fhanér (1974)
and Wil cox (1979). The main dwfference is that rather than a binomial

. .model, here we have a compound binomial distribution. .
v

Following Fhangr (1974) suppose we want to choose the smallest N so
. ).') ; A7 . ¥
that when "y>y,+5%,
‘ 0 . (6) -
Pr(v>yy)>T ‘
) - and when y<yy-6*, ’

Pr(§<vgleT - , )

» AN

where %<T<1. Fhaner assumes 6*>0, but we require 6‘*_>_1 so tkat we can apply

Theorem 7. In particular, %or y_>_~ro+6*, and for N=1, —

*Jn~x @&

. Y0+6 n ~Y0—6
% M’Yo q < = [Yi n

where [yo:l is the smallest integer >Yg-  Again applying Theo?em 7 (the

second mequahty) we have that for Y<Y(-8




X ‘ S
, . . - ~ ¢ [‘YOT-] /n .YO_G* _-Y0+6

‘ Priy < vg) = 1-ppy 12 z (I - -

0% x=l. - :

Let n, and n, be the right-hand side values of (8) and (9) respectively."

From the above results’, we have that for-a random eample of N examinees,

* <
-when  y>y,+8 : ' ‘ g
. . . . [ '
A N y N-y < /
- —Pr(y>yo) > % (.y') n (T-TI-I),
. . ) .Y=[N'Y0] g’ ¢ +(10)
SN P ~
and when Y <Y - 6> )
. . . P, )
. [y, 117 . :
o Priveyg) 3 5 (D' (- nz)“'y )
- . . y=0. : W,
Thus; we can guarantee both (6) ahd (73, regardless of the actual value . L=

'c_)f' Y, by choosing the smallest N s0 ”?ﬁt the r.i.ght-hand side of both h(lO) )
and (ﬁ) are greater than or eq'ua’Tto T. .

As a more specific examp'le sup;;ose we have an n=10 item test, that
'(fan answer—untﬂ correct scormg protedure is to be used to estxmate Y and

we want to determine the minimum number of exammees we need in order to

L]

A

correctly determme whether y is above or below o= 7. In particular, sup-
* ' To- .

-pose § —1, and that if y_>_yo+6 we want Pr(yg_yo)g_T—.Q', and if y<y, -8 we '

want Pr(?qo)iT, regardless of the _’ad‘t’ual. of y.

) 10 i 6 R
 From (8) and (9), n; = 27 (wf) g*.2"*= 897 and ny* z ( 0y,6%.4" 9 618. |
x= 0

Substwtutmg these values.. 1nto (10) and (H), it can be vem fied that the /

mimmum H reqmred is 67 - ~
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ABSTRACT _ -

Consider an n;item multiple choice test where it is decided that
an examinee knows the answer if and only if he/she gives the correct
response. The k out of n reliability of the test, py» is defineq to
be the probability that for a randonly sampled examinee, at lea%; K
correct decisions are made about whether the examinee knows the answer to
an 1tem._ The paper describes and illustrates how an extension of a
recently proposeé_?zzgat’structure model can be used in conjﬁnction'
With results in Sathe et al. (1980) to estimate upper and lower bounds _
on py. A method of empirically checking the model is discussed. Included

is an exact test of whether guessing is at random.

-
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Consider a randomly sampled ex&hinee responding to a multiple-
choice test jtem. In mental test theory there are, of course, many
procedures tﬂat mighpabe used to analyze this item. One approach might
be as fo]]bws. Suppose a converrtional scoring procedu}e is used where
it i; decided that an examinee knows the correct response if the correct
alternative is chosen, and that otherwise the examinee does not know.
If it were possible to estimate the probability, T, of correctly deter-
mining an examinee's 1atept state (whether he/she knows the correct
respovge) baséd‘on the above decision rule, this wéu]d gjve an indication
of how well the item is performing for the typical examinee. The obvious
problém is that underﬁnormal circumstances, there is no way of estimatipg
this probability unless additional assumptions are made. One approach
is to assume that examinees guegs at random among the alternatives wﬁen
they do not know the .answer. If this knowledge or random guessing model
holds, T is easily estiﬁated. However, empirical investigations (Bliss, i
1980; Cross & Frary, 1977) suggest that this assumption will frequently ‘
be violated, and some related empirical results (Wilcox, 1982, in press a)
indicate that sgch a model can be entirely unsatisfactory for other ;easons
as we]]j ' S
Another approach is to use a latent structure model, and many such
models have beenxproposed for measuring achievement (e.g., Brownless &
Keats, 1956; Marks & Noll, 1967; Knapp, 1977; Dayton & Macready, 1977,
1980; Macready & Dayton, 19775 Wilcox, 1977, 19776, 1981a; Bergan et al., 1980).
The choice of aemodei’depends on what one is willing to assume in a
particular situation. These models maéz it possible to estimate errors

- g
at the item level such as




.
] .
B = Pr(randomly selected examinee gives the correct response|examinee

does not know)

N [
f

which‘}n turn yields an'estimate of . An illustration is given in a
later section. (For a review of latent structure models visli-vis
criterion-referenced tests, see Macready and Dayton,-1981.) For some
recent general comments on using latent structure models to measure
achievement, see Molenaar (1981) and Wilcox (1981b).

Assume for the moment that‘for each item on an n-item test, an
“estimate of t can be made. lLet X; = 1 i1f a correct decision is made on
the ith item for a randomly selected examinee; otherwisé X; = 0. Then
(xi) = T (1 =1, iﬁ} is the probabf]ity of a correct decision on

the ith item where the expectatlon is taken over the popu]ation of

v

examinees.

Within the framework just describéd, how should an n-item test be
characterized? An obvious -approach §s.to use

¢

1 _

- »

wEEx) = o : [2]

which is the expected number ot’correct decisions aﬁong the n items.
Knowing u might not be important for Certain types of tests, but
surely 1t is important for some achievement tests. However, even if /) .
p is known exactly, it would be helpful to have sdme addit]onal re]at??
Informatxon about zx1 For instance, a.test constructor would havea
better Tdea of how the test perfbrms‘if VAR(zxi) could ge determined.
The problem is that VAR(zxé)“depends on €0V(xi,xj), but:this last quantity
is not known, and at present there is no way of estimating it. An
alternativg approach is to use the k out of n reTiability of the test
(wi]coi, in press t)rwhich is gisén by
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Y
pg = Pr(zx, >k) ., . ‘ [3]
In other words, if the goal of a test is to determine which of n items
.‘ ’ A 1 . . .
an examinee knows, and if a conventional scoring procedure is used, Py
' A )

is the probability of ‘making at least k correét decisions for the typiéal
examinee. _ 1
Suppose,. for example, n = 10-and y.is es@imated to bedf. Thus, the

expgcted number of correct decisions is 7, but there is no fﬁfbrmation

about the_like]ihood that at least 7 correct decisiQns will be made. -

If Py wene known, a test constructor would have some additional ;nd

usgful information for judging the accuracy of the fest; Py might also

bé?ﬁsed as fpllows. Suppose it is desired to have 98'3l'§' If u is /

estimated to be Q.i, this 1§ encouraging, but it is not clear what

implications this has in terms of making at least 8 correct dgcisions\

. for the typical examinee.
It is not being ;ngested that determining Py is impqg;ant for every .
_ test that might be constructed, but certainly it is important in various
sikuations. For example, when measuring progress .through an instructional
program, surely it is desirable to determiﬁe which of the skills represented
by the items 6n the test have or have not been acquired by an examinee.
Aﬁ estimate of Pk yields information apout how well a test performs this
goal.
If Xy is independent of xj, i # J, an exact expression for Py is

qvai]ab]e via the compound binomial distribution. Perhaps there are
situations where this independence might be assumed, but it is evident

that this independence will not always hold. If it can be assumed that

COV(xi,xj) > 0, bounds on p, are available (Wilcox, in press b). Recently

.A Sathe, Pradhan, and Shah (1980) derived hounds on py that make no




. . 4 . . S .
. ¢ r j .
assumpt1on about COV(x ,xj) The main point of thislpaper is that these
bounds can be est1mated/’sing an extension of an answer-until-correct
(Auc) scoring procedure proposed by wilcox (1981a). The paper also -
indicates how an exsct test can be made of certain implications of the
new model. This procedure can also be uséd to make an exact test of
whether guessing is at random. (For an. asymptotic test, Xee Weitzman,
1970.) Finally, the paper includes some comments on how a test m1ght

be modified when u or P 1s Judged to be too small.

-~

An Extension of an Answer-Until-Correct Scoring Procedure \

A

As just indicated, an extension of results in Wilcox (1981a) is
needed in order to apply the bounds derived by Sathe et al. (1980).

’ First,‘however, it is helpful to briefly review the procedure and basic

.

assumptions in Wilcox .(1981a).
Consider a specific test Ttem having } alternatives from which to:

choose, one of which is the correct response. éssume examinees*reépond‘

according to an AUC scoring procedure. This means that examinees

choose an alternative, aéd they are told immediately whether the correct

response has been identified. If'they are incorrect anoi%ér response

is chosen, and this procéss‘éontinues until they are successful. Special

-

forms are generally available for admin1§$ering AUC tests which make
these tests easy to use in the classroom.

Let i1 be the pfoportion of examinees who know the correct
response, and let %, (i=o0, vers t-2) be the proportion of examinees .
who can éliminate i distractors given that they do not know. Wilcox
(1981a) assumes that examinees e]imipate as many d{stractors as they

can, and then choose at random from amony those that remain. If P;
?

7
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is the probability of choosing the correct response on the ith attempt,
then - ‘ . =
t-i _ ' . .
= 'Z Ci/(t - 3) =1, ..., t). ‘ [4]

-

Note that the model assumes that at least one effective distractor is .
be1ng used. Put another waxfwno distinction is made between examinees ‘. v
who know the answer and examinees who can e11m1nate all of the d1stractors;
Assuming the model holds,
S-1 =P 7 P . [51
and ‘ :

TE51-p, . | S L. (6l
If in a random sample of N examinees, ¥y examinees are correck on theirl
ith attempt, p} = yi/N is an unbiased ggtimate of P; which yields an
estimate of £, ; and 1. _

A]thoggh empirical studies suggest that this moée? will frequently
be reasonable (Wilcox, 1982, iq press a), there are instances where this
yi]] not be the case. For example, some 11ems might require a misinfor-
mafion model, and an appropriate modification. of the AUC scaring procedure
has been proposed (Wilcox, in press a). Further comments oh this -
problem are made in a later section of the paper.

Consider any t&o,items on an n-item test, say items i and j.
App]yiné results in Sathe et al. requires an estimate of Tij=P”(x1=T,xj=]),'
j.e., the joint probability of making-a correct decision for both* {items
i and j. The remainder of this sec:§;q outlines how this might be done.

It is assumgd that an exami&ee‘s guessing rate is independent over
the items that he/she does not know. This means, for éxampTe, that if

-

an examinee can eliminate all buf 2 alternatives on item i, and all but

. .
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3 alternatives on item j, the probability of choosing the correct response

< on the f1rst attempt of both‘items is (1/2)(1/3)9— 1/6.-
For the/two 1tems under considerat1on let pkm (k, m= l,l..., t)
be the ﬁrobab111ty that a randomly selected examinee chooses the correct
response on the kth attempt of the first item, apd the qgrrect response
on the mth attempt of the second, If cg is the proportion of examinees :
" who can e11m1nate g d1stractors*from the first item and | distractors
from the second (g, h =1, ;}., t 1), then

"' t-k t-m . 0 Y )] ]
L St - 1)(t - : C 7
Pk 120 iZO ciJ . J ' [A

- The last expression can be used to express T 1. t-] in terms of the pkm‘s

which can be uséd to estimate Ty 1.t.1- Hote that if the first item has t'
alternatives; ] # t, simply replace t-k with t'-k in eduation.7.

. 'l:o clarjfy matters, consider ’the si)ecial case t = 3, Equation 7\
says that . ' .
Pry 7 Bap ®epn/2 * g3 ¥ Bl ¥ uqg/A /6 2 ag/3 [
*egr/6 *egg/d - ‘
Pro = 81/2 ¥ tpgf3 + gy /4 + 5/ + 5y /6 + 5o/ ]
P13 = Spof3 f}w(é /9 N s -hol
g Ppy = ;1'2//2 +505/3 + 1yy/4 + 10/6 v ‘1.0/6 * 2og/? [.”.] ’

Pop = Eny/4 + 810/6 Negrf6 + gy (2]

Pz = £10/6 *+ Egq/9 [13] )
Py = Lgpl3 ¥ £gy/6+ Sgyl9 . Dl

Pap = Tg1/6 * £gg/S - a ; . [15]

.  Pag = 5gp/9 ' : [16]
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Thus, sta;ting with equation 16

- g | BAY,
%10 T P33 : . [t J\

I ‘(Cm

» gnd eventuaﬂ.’y Lyp Can be expressed in terms of the P >+ Reptacing

11

¥ ~

6(p32 - P33) . ., . f1s] .

the pkm s wdth their usual unbiased estimate yields a est1mate of z,:z2 .
say 1;22 But it can be seen that fon the two items under consideration ’
L (items 1 and j), > . 5 . \
D TR P B : : . el
C Rep]acing RIVE: and P with Zo9 and P13 yields an estimate of TiJ = Pr(x —“1 X, ~1)
~ .. say T'}J For arbitrary t, T4 15 given by equation l19 with oo replaced ‘ »
with ¢ ’ "2 ) , )
t-1,t-1 % Bounds on p, . L T, .
" This section illustrates how the results in the previous section
. © " can be used to estimate bounds on py-. First, however, results in Sathe
et al. (1980) are summarized, " . . h \Y ,
Reca]] thatf’n 'cxi'an_d let « .
. riz'l N [ ].
: 5 = DIRTIAE , 20
o, i=1 j=1+1 [N . .- % ~ . #
' ‘ . uk =w-k ST Lo | . [21]
and . _ o o L e .
. iV, = (25 - k(k - 1))/2 4 R 5 R,
w e * - i
S * v [23]
If 2y, <*(n +k ~.2)Uk’_i, then®. - i
gk ->— ¢ ] ., o . * . %,
R TR DR (KRE -k + ) D o ‘
O R =% a
* . [ L4 s .& “ ] :, i




where k* * k - 3 is the largest 1nteger in 2V 1/ Two upper

bounds on py are also given. The firstv1s
pp <1 + ({0 + k- 1)Uy - 2V, )/kn S [25]

and the second is that if 2V, < (k - J)UL,

) R I )

d-2-— <k Kk <0 : o0 [26]
(k - K*)(k - k¥ + 1) . :

o

where k* + k - 1 is the largest integer in ZVk/Uk.

An I]]ustration

- S e mm——— - »

~

“for the.data in Tab1e.}, this is .107. Next compute .

To illustrate how Py might be applied-and inté}preted, observations
of seven items were ana]yzed according to the procedure outlined

above Each item had two d1stractors and they were found to be

-

consistent with the assumptions of the answer- untx]-correct scor1ng
»

model. (See Hi]cox, 1981a). Table 1 shows the observed frequencies .

»

for the first two items, The question to be answered is-if these
séven items are taken to be the who%e test, do they g1ve reasonabyy

accurate 1nformat1on about what the typ1ca1 examinee knows?
A

" Generally, when estimating Zo9 there is rno need to estimate all
S ool . ,

of the ¢'s in equétions 8-16. . For the situation at hand, z,, can be

estimated as follows. First compute .

202’3 = P31 = Py I - o [27]1 |

-

2T Py sy L L28]

K
which is .074. " Then




e
AR

. S0 = Py < Prg - f2 - g3 (291
* which is eque]»to'.225. Substitutiqg,these vatues into equation 19,
the estimaté of 79 is 112 = .751 Applying equation 6 to all seven items,
it is seen that y = 5.434. In other-words, it is estima?ed that the

A

expected number of corréct decisions is 5.434.

Next consider pg." The value of 'S was estimated to be 16.929.
From equations 20 - 26, this implies that

\ M18 < pg < T4, | [30]

.

./ This analysis suggests that these seven items, taken as a whole,
are not very accurate since there is at least a?26 percent chance of
making an incorrect decision on three or more items. How should the

test be modified? Another important question is to what extent can.

ny

. </'It be improved? One approach to improving the test is to increase the

number of distractors, and another approach is to try to modify or
rep]ace the. distractors that-are being used. The latter approach will
be considered first.
The initial step in trying to decide whether to replace or modify
the existing distractors is to determine the extent to which they can
be improved. This can be done with the A ﬁmaeure in Wilcox (1981, eq. 20).
. This measure is just the difference between the maximum possible va1u? - >
of ¥ and the estimated value given that L, = 22, Another ge]ated '
. Measure ?s the entropy function (see Wilcox, 198la). This measures

“the effectiveﬁess of the distractors among the examinees who do not know

the correct response by 1nd1cat1ng the extent to which pz, cer 5Py are
unequal. The closer they are to being equal, .the more effective are },—s\,

the distractors, i.e., guessing is closer to being random. It has been .
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. pointed out (Wilcox, T981a) th;.t A might: be objectfrc-)-;lab]e ay a
measure of the extent to which pé, eer 5 Py are;equal but for presenihpur-
poses it wouﬂq\feem to be of 1nterest because increasing pk depends on
the extent to which ;x can be 1ncreased for each item.
Referring to Wilcox (1981a), a little algebra shows that for the
case t = 3, . . o ‘ - .

A = (pz - p3)/2 .

di

[30]
For item 1 in Tat?]e 1, A = .024, and for item 2 it is .034 (A is assumed
© to be positive, and so if P, < P3> A is estimated to be zero,)
*If the number of a]ternatiyes for item 1 is increased to t = 5,
and if guessing is at random, .then the value of ¢ would be .893 which
~ srepresents 5 increasgesof .126 over the value of © using the existing.
distractors, Thus, ft’would seem that one approach to improving

- h - \ . -
. v item t is to find two more distractors ‘that are about as effective as the
two being used. Of course in practice, this might be very difficult

F
to do.

@

Checking Certain Implications of the Model, and an , ”

Exact Test for Random Gu»e'ssing

4.

Suppose ¥qs ... 5 ¥, have a multinomial distribution-with ceﬁ
probabﬂitjes Pys oo 5 Py wher:e Iy; = n and Ipy = 1. This section
describes ém exact test of whether twd or more of the p.‘s are equal.

In other words, the null hypothesis might be that p. = p for some 1 # j,

* or that p1 = p = P etc. An important special case is the null

hypothesis that-
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When equation 31 holds for the AUC scoring model, guessing is at random,

and the éistractors are performing at their maximum possible effective-
ness among the examinees who do not know (see Wilcox, 198la). -
The main motiv&fion‘for including this exact test in the present
paper isfthat it is re]gyant Qhen verifying certain implications of the
new model described in previous sections. Consider, for example, equations

8 - 16. They imply that various {hequal1ties must hold which includes
. )
Plu2Pig2 P32 Pp32Py3 - [32]

o ;
An asymptotic test of equation 32 is atready avaitable (Robertson, 1978).

Suppose, however, the number of observations is moderate or small and

o :that, for example, p]]'< Pyp OF Pyg < Pp3 < P33 Then td'test the

’ assumptibn_that,p]] > Pyp requires a test of Pj1 ='Pyp- In the second

case, the null hypothesis would be P13 = Pog = P33 Note, however, that
1Py < Prpand pyy > pyg < Pygs a'test of pyy = pyp and pyy = pgy is
needed, but that P12 = P13 would not be tested because P12 > P13 is
already consistent with equation 32. )

The proposed test 1s based on the exact distribution of

s=1ys . | [33]

An expression for the probability function of S was derived by Alam and

v )
Mitra (1981), but unfortunately their result is incorrect. (Prof. Alam .
has confirmed the error in a letter to the author.) A correction to the

Alam and Mitra paper is in preparatien which will include a correct

" expression for the probability function of S. To.ilTustrate how this

distribdtion can be used to test the’impWications of the model described

in this paper, the distribution of S for k = 2 is given below.

L)
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Let a be the smallest 1nteger greater ‘than or equa] to n/2 and let

;\w

b be the largest 1nteger between n/2 and n%;uch that b2 + (n - b) i

If n is odd g
b
= n 1 - n-.y
Lo oy 8

where s is an integer,

Pr(S < s) [34]

oy (BEE 3)'

If nis even; subtract L?Z] n/2(] - pﬂnlz from the right-hand sidesof
equation 34.

For k > 2 the exact distribﬁggén of S is givgn by a recursive
formula that will appear in 4 correction to the Alam and Mitra paper.
To 11lustrate the proposed test, 1t is useful to also note that for k = 3,
the joint distribution of Yy and Y3 given Y is binomial with parameters

n= Yy, pf(1 - py) and ps/{1 - p;). Thus, from equation 34,

n-y1}{ Pp W P3 Yn-yy-y |
Y J ]"p] 1-p} ; ' x\

rn_y] pz p‘3 nj.y]".y
yensyp-b ¥ (TP (TP

2, 2 b
Priyy +y5<sly)) = §
B y-_-a
»
n-y,=-a
s "

[35]

ifn - ¥, 1s odd, and if n - ¥y is'even, Pr(yg + y§.§.51y1) can be determined
by gvaluat1n§ the right-hand side of equation 35 and subtracting . ¥ fg

n=y, ' Py Y (n-y7)/2( b3 Y (n-y;)/2 e S
(n‘y])/z I"p] -]—:b—}— T - . : ; L361] * s

where n - " replaces n in the definition of a.and b.

AN

*

To test the hypothesis
HO: Py

, ¢
compute s = zyf and then compute Pr(S < s) under the assumption that H0

=p2= =Rk

is true. If this last duant1ty 1s small, say less than o, reject HO.

Note that from Marshall and Olkin (1979, p. 391} it follows immediately
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*
that this hypothesis” testing procedure is unbzased (In other words,

" as the actual vector of Py values moves "away from HO’ “the power of thé

test increases.)
The brocedure 1s illustrated by testing to see whether guessing is
at random on ohe of tﬁe_1temsitsed above. The observed outcomes were
‘ffy{’= 303, y, = 46, and ¥3 = 21. If guessing is at random, then, as

previously indicated, Py = P3- Since P does not play a direct role in
the null hypotheszs, the conditional distribution of Yo and Y3 given y] .
is used. The nu]l hypothes1s is that pZ/(l - pl} p3/(1 - pl) = 1/2.

R 22 ! R
Compute s = 46 -+ 21 = 2116 \
Pr(xs + x5 < 2116]y; = 303) [37]
. is given by equation 35. Referring to tables compiled by Pearson (1968),

equation 37 was evaluated to be .035 and so the null hypothesis would

. be rejected at the .05 level. A

Estimating t,. When Therg Is Misinformation

1J
Among the 30L1tems analyzed by hi]cox (in press a), the observed
test scores suggest that two of the items do not conform well to the
AUC scoring que]rdescriﬁed in a previous section. Thus, the propose
estimate of 43 is inappropriate. This section illustrates how this
- problem might be solved when a misinformation model appears to be more
appropriate for some of the items on the test. -
Consider a test item with t alternatives, and fet %y bg the pro-
portion of examinees who eliminate the correct response from consideration

‘' on their first attempt of the item. (An AUC scoring procedure is being

! 7

o

. assumed.) Once th'e examinee realizes that he/she has misinformation

129
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about the Skill represented by the item, it is assumed thatrthe examinee

chooses the correct response on the next attempt. THis assumption is

made here because it seems to give a good approximation to how examinees
were behaving on the items used in Wilcox (in press a). It is also
assumed théE if an examinee does not know and does not have misinformation,

then he/she guesses at rapgdom among the t alternatives. Finally, for

~
examinees with misinformation, assume that they believe the correct
response is one of ¢ alternatives that are in actuality incorrect.
Thus, examinees wiyﬁ*aisinformation will require at least c + 1 attempts
before getting the item correct. As an illustration, consider t = §
and ¢ = 3. Then, . ]
Pr =8y ¥ By /S [38]
Pg =ty topq/5 ‘ < 4]
P5 = %/5 N , [42]
where i+ Ts the proportion of examinees who do not know and who do
not have misinformation.
Ib}szode] gave a good fit to the observed scores in Wilcox (in .
press a), but an even more general model is possible. 1In particular,
let y be the population of examinees who have misinformation and give
the correct kesponse once they have eliminated ¢ = 3 alternatives. Then
: \ i
p4 = th + ;t+]/5 » [43] [

pe = (1 = y)g, *+ £,,q/5 [44] ’
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. . ) Various modifications of the model are, of course, possible and
presumably this model (with some appropriately chosen ¢ value) will give
a good fit fo the obsérved test scores. For 1llustrative purposes,
equat}ons 35 = 44 are assumed Yo hold. The point of this section is that
it is now possib{g to qgain estimate 5 whére thé misinformation model

is assumed to hold for one or both of the items in any item pair. Note

that for a single item where equations 38 - 44 hold,
TELy o/t . ~  [a5]

To estimate Tij’the Joint probability of making a correct decision
on a pair of items4where, say, the first item is represented by a mis- ,
information model, equation 7 must be rederived. Acqordingly, let t!
be the number of alternatives on the first item, and t is the ALmber of

alternatives on the second. The misinformation model assumes that on

»

. ' the first attempt of the item, examinees belong to one of three mutually

Sb exclusive categories, namely, they know the answer and choose it,

-,

1
they have misinformation and eliminate the correct response, or they
. do not know and guess at random. Thus, using previously established

notation, equation 8 becomes,

Prn = Bgp o/ oggf3E H g/t + g, /2t G;o/:"t' [46]
where, in this illustration, t' = 5\ There is no cié term (1 = 0, 1, 2) .

because the misinformation model assumes that if examinees do not know,

‘they cannot eliminate any of the distractors. More generally,

t-1 t-1 ) .
P-” = Ctt_]’t_" + 'Zoct"‘] ,j/(t “,J)t‘ + .Z Coj/(t - J)t [47]
J= J=0
Also -
. pkl = P-” "' §42 k=2, ..., t ) [48]




‘.
*

~

"1s that the pkm‘s can be egpfessed in terms of the Cijls‘

. 16 ' ~
~p]2 = t41/2t| + 540 . . ’ ‘< [49]
_ , e — % ,
P'Lm = _26C4j/(t ’»j‘)t‘ - (m =0, cees t-2) [50]
55 . ‘
The remaining pij values can be determined in a similar manner. For the = . ”,
two items being used here . -
m : . ~
Py = ) ggslt - )t (m=2, ...,t) - | ' [51]
Pon ™ shoos ,
and \ -
\ -
Pam = Pop h _ -

The expressions for—pdh and Psm involve the proportion of examinees

who have misinformation on tne first item. Let Cetj be the pro-
portion of examinees who have misinformatior-about the first/item
and can eliminate j distractors on the second (j = 0, fee s t-1).
Pr?vious expressions for the pkm‘s did not. involve Tyt because the

misinformation model being used assumes that examinees who have mis-

- information will get éhe item correct on their fourth attempt.
f 3

Of course, as previously indicated, some modification of this model
(i.e., some alternative value for ¢} will probably be necessary when.

studying‘a different item for which there‘ié misinformgtion. The point

4 The remaining equations needed for the present situation are
. 2

Pg1 = Tsp * 85y/2 + £g0/3 + 1,/5 + 5 /10 + ;00'/1_5 [52]
Pgr = t5/2 * ;5(;/3 * gy, /10 + Zy0/15 . C ‘ [53]
P51 = £g2/5 * 50 /10 * £g/15 [54]
Psp = 201/10 * 50/15 | ﬁ] .
P53 = £gol15 - [56]
- 132~ . T
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Thus, starting with equation 36,“t00 can be estimated by replacing pg,
with its usual unbiased estimate, and the remaining z's can be estimated

in a similar fashion. This, in turn, yields an estimate of 1, and soO -

13
bounds on Py can again be estimated as was {llustrated in a previous
secti%,n.

Discussion

One feature about Py that might be disturbing is that generally it
is an increasing function of the ;.'s, the proportion of examinees who
know the ith item. Thus, one way to ensure that ok is close to one is
to use easy 1tems This approach certa191y is not being recommended,

The view taken here is that the goal of the test is to determine which of

n specific skills an examinee has acquired. The 1dee is that the student,

or ﬁerhaps an entire éroup of students,*can be given remedial work on
those skills they have failed to Jearn. If p, is small, and if it

E appears that adding effective distractors is difficult to do, ;his

suggests that a conventional scoring procedure is inadequate, and that

1t should probably be abandoned. The possible }eplacements include

using completion items, the AUC scoring precedure used here, or £

one of the many latent structure models referred to at the begfnﬁing

of the paper. These models make it possible to determine whether ;1

1s small (e.g., Wilcox, in press). If it is small, perhaps all of the

examinees should be given additional instruction.
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The results reported in this paper might also be useful when
empiricaﬁ]y checking the assumptions of other latent structure models.
Fér exampie, Macready a;d Dayton (1977) and. Wilcox (]§77) propose models
where it is assumed that pairs of equivalent items are available. Two
items are defined to be_equiva]ent if examinees either know both or neither
one. When equivalent items are available, the proportion of examinees
who know both can be estimated (assuming local independeﬁce). Macready
and Dayton checked their model with a chi-square goodness-of-fit test, but
this requires at least three items that are equivalent to one another.
(When there are only two items, there are no deg;ees of freedom left.)

For illustrative purposes, assume t=3, and.consider equétions 8-16. 4

If two items are equivalent, then

%217 %0 " %12 = %02 = O ‘ | [57]
P12 = P21 = Py [58]
! .
'ﬁpn = Pp3 | - - [59]
and v ) °
P31 = Pp3 > : [60]

and an exact test of tﬁe;e equalities can be made using the procedure
described in an earlier section. If one of these items is assumed to
be hierarchically,re]atedAto the other, again certain equalities must

hold among equations 8-16, and this can again be tested (cf. White and

I}

Clark, 1973; dgyton and Macready, 1976).




Table 1

?
¢
+

Number of Examinees Requiring i Attempts on Item

¥

1 and j Attempts on Ttem 2

Number of Attempts on.

. Item 2
1 179 26 - 14
Number of

Attempts on 2 76 8 4
Item 1 .
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: ABSTRACT

when determining the length of-a criterion-refe{renced tesg ;esults
in van den Brink and Koele (1980) an\d Wilcox (.1980a, 1980b) inmdicate .that
the problem of guessing might be more serious than may have .been expected
Recently, however, a new method of scoring tests was proposed that dorreq};
for gugessing'witﬁout dssuming guessing is atarandom. Moreover, empirical - . ~.\
investigations suggest that the underlying assumptions of the new scoring |
\procedure will frequently ho]d.\! This paper indicates how test length ‘
.might be determined when the new scoring pro;:edl;r‘e is used. The results

indica;:e ﬂthat test length might be sybstantially reduced when the new scor-

ing rule can be applied. ) . _

1
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1. INTRODUCTION :=

Consider’a single examinee and a domain of muttiple choice test items. a
Let 1 be thg proportion of items the examinee:knows, and let p be the exam-

inee's percent correct true score. In criterion-referenced testing a
: . *

- 4

frequent goal is determining whether an examinee's true score is above or
» .
below a known constant, say - Usually the problem is formulated in terms

of p {(e.g., Huynh, 19765 Wilcox, 1979), but recently attention has also -

been given to the case where T is the true score of interest (e.q.,

-~

van den Brink and Koele, 1980; Wilcox, 1980a).
A basic problem with criterion-referenced tests is determining how

maﬁy items to include on the test.. Existing sGlutions are summarized '

by Wilcox (1980b). (See, also, Berk, 1980.) Although considerable progress

has been made, serious problems remain. .The main difficglty can be summar-

ized briefly as follows: When the test Tength probiem is formulated in

terms of p, and a single exam1nee, the solution prOposed by Fhaner (1974}

may result—Tn—a test that is not overly long.” However, 1f the prob]em is

pog;d in terms of 1, and if guessing is assumed to be at random, van den Brink

and Koele (1980) show that the test may have to be substantially longer to

guarantee the same level of test acturaqy as is obtawned when the problem o

“of guessing. can be ignored. Wilcox (1980a) notes that the prob]em is much

worse than indicated by van den Brink and Koele: This is not surprising

L3

because there is no particular reason to assume random guessing, and empir-
3

ical studies verify tﬁat such an assumption might be unreasonable (g]iss,

1980; Cross and Frary, 1977). ‘ . .

L]
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Wilcox (1980b) indicates that the'problem of guessing might be par- o
tially alleviated when latent structure models can be used to estimate 1, |
but there are clearly situations where such models are inapﬁropriate’

(cf. Melenaar, 1981; Wilcox, 198la). The result is that if multiple choice
test items must be used, an uqrea]istica1fy large number of i?ems might be
necessary in order to be reasonably certain of correctly classifying an
examinee whose true score t is close to the criterion score Qe ’

Thi's paper extends existing test length solutions to situations where
an answer-until-correct scofing procedure can be used. An advantage of the
new solution is that it corrects for guess{hg without assuminé guessing
is at random. In addition, the new results represent a substantial im-
provement over existing techniques when multiple-choice test item; are

befng useds

- -

An Answer-Until-Correct Scoring Rule

WiTcox (1981b) proposed an estimate of t based on an answer-until-

correct scoring procedure. This subsection briefly reviews the assumptions

-

"y

and{;ustifica;ioﬁ for using fhis‘sqpring rule. )
Consider a multiple-choice test item with t alternatives, one of which

is correct. An answer-until-correct test refers to situations where an.

Vg;aminee choosef alternatives until”the correct one is identified. This

is qsualﬁy acgomp}ished by hgving examinees érase a shield on an answer

sheet until the correct alternative is chosen.

]

For a specific examinee and a randomly chosen ¥tem, let p; be the

probability that the correct answer is chosen on the ith attempt (i.e., the.
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probability of i erasures is pi). Wilcox makes certain assumptions about
how an examinee behaves when attempting an item, and in terms of the pi's;

these assumptions imply that |

Py2Pp2 .o 2P . [1]
Empirical investigatioh; made by Wilcox (1980c, 1981b) suggest that the
inequalities in equation 1 will frequently hold. For resu{ts on how to
characterize n-item tests, see Wilcox, (in press?. For a strong true score
model, see Wilcox (1980c). .

If equation 1 is assumed, a maximum likelihood estima;e of ¢ is avail-

able via the pool-adjacent-violators algorithm (Wilcox, 1981b). Here,

however, there is no loss ‘in simply using the unrestricted maximum likeli-

-

hood estimate wﬁich is
: = (‘xl—xz)/n : [2]

where xi({;l,Z).is the number of items for which the examinee is correct on

the ith attempt (i.e., the number of°times'the eg&minee erases i shields),

and n is the number of items on the test. The appeal of equation 2 is

" that it estimates t without as§hming guessing is at random, and as was pre-

vipus]y noted, there is some empirical evidence that it is justified.
It should be noted that 3 is theorefically justified because t can be

shown,to be equal to P3Py when the assumptions in Wilcox (1981a) hold.

| 2. oetEmNING FrEST Lene
This section extends the test length solutions of Fhanér (1974) and
Wilcox (1979) to the answer-until-correct scoring procedure outlined above.
As in Wilcox (198{9) it is assumed that x, and x, have a multinomial,

=

distribution.
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Consistent with previous test length solutions (Wilcox, 1980b), the
goal is to determine the éma]]est n so .that when t<my-6* or when T>my+s*
the probability of a correct decision (PCD) is at least P* where L<P*<l
and §*>0 are predetermined constants. In this section the decision 21,

is made if %gpo; otherwise the reverse decision is reached. By convention,

either decision about t is said to be correct when t is in the open inter-

val (no-s*, nd#&*). This open interval is called the indifference zone.

When T>my7 6% the rule for deciding whether 1 is”above or below )

means that o ' , |

. : n! X: X, X . -
= _ 1p2q3

.i\\\\\\ PCD = I — I, [Tn- ;xz) plp2gq | (3)

ﬂhecz A={(x1;x2): Xy-Xp2nmol, EX=n, q=1—p1-p€§§nd where x.>0 (i=1,2,3).

Qhen Tfﬁo-ﬁ* , —

g PCD = £ — -t 1

@3- @

where B={ﬁx1,x2)f Xq~Xp<nmg}.

To guarantee‘
PcD > P* ° (5)

when :gy0+6* o} when rgyo-s*{ we consider, as is typically done, the
worst possible case. That is, the value of t is determined that minimizes
equations 3 and 4. Then the smallest integer n is found so that PCQgP*.
It follows that éguation 5 is satisfied for any value of;-r=p1~p2 not in

the indifference zone.




Since the conditional distribu}ion of-x1 inen Xo is binomial, it can
be seen that for T2m*8*, the PCD is minimized when t=mg +6%*, and when

15g0-6* the minimum occurs when T=n0-6*. Consider, for-example, the case . &}

T2myt6*.  The probability of X; given x, can be written as

i X n-xl

- 1 - A -
fx;1%,) = n-Xp| [ Pp*r | -2yt | ’ ,
4
Thus, the PCD is equal to .
+
. . n-[nno]n n) % n-x
- "2
A +f(xllx2){x] P, (1-p,) {6)

x2=0 x1=[x2+nn03

4

4

where [x)+ means the smallest integer greater than ér equal to x. The

term f(xlfxz) is the only one that depends on the pafameter . Also,

for each Xy, and fixed bz, the second su&mation is an increasing function

of t (see, e.g., Wilcox, 1979). Thus, the value of % that ﬁinimizes equa-
| tion 6 with the restriction that T2M+8* s r=myte*  The case <M= 6* is'

hangled in a similar fashion, and in particular, the minimum PCD occurs

- when T=Eb'6*’, o (

There remains the problem of determining the exact values of Py and

Py that minimize the PCD when P1-Po is equal to w0—§* or my+é*. An "
exact solution is not”given, but it is possible to furthervlimit the possible
values of Py and then"to use numerical techniques to solve the problem. .
First suppose 1=n0-6*. ISince p1+p2+q=1, 2p1+q=1+w6-6*. It follows’

=2

7
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that the largest possible value for p; is p1=(1+my-8*)/2, and bicause of

the restriction on g, the smallest possible value is

l-1r0+6* ‘ i
p; = —F + 11’0-6* ‘ ’ . S
- &
In practice the closed gﬁigrval [paﬁ p]] will be relatively short. For
example, if n0=.8 and &*=.1, pi=.85, ?ji=.775.. Since p2=p1-n0+6* and
q=1-p1~p2,~§he PCD can be written as a function of Pp» and the value of
p; that minimizes the PCD can be determined. !
. A similar approach can be used for the case r=n0+6*. - the lowest

possible value for P is

1"'"0-6*

*
¢t 7ot

-—

a;d theA]argest possible value is (1+n0+6*}/2.
— A]Ehough the va]dé of Py can be determined that minimizes the PCD,
there will be instances where this will be inconvenient and possibiy
expensive to do. However, it is possible to obtain a conservative choice~
for n by\Eonsidering the case p1=(l+w0-5*)/2 and g=0. Then the.PCD is
equal-to gko-l . “ ' .
z (n] p);(l-P]L

)n'X
x=0 X

where X0 is the smallest integer greater than or equal to n(n0+1)/2.
This situation yields a conservative value for n is/the sense that for
values of .-t not in the 1nd%fference zone, t achieves its maximum variance when

p1=(1+ﬂ0-6*)/é and g=0.

- 17




. - .
-

For this particular value oF’pl, and sthce q=0, results in Fhanér (1§74)

and Wilcox (1979%), can be-applied. In particular, an !bproximpte solution
for n is - A
A (1n) (1-ny)
0"

" (5%)° | (1)

4

where A is the P* dhanti]e of the standard normal distribution.

- T

Suppose, for example, P*=.9, §*=.1 and w0=.8. To ensure that the
PCD>.9 for any = n;t in the indi;ference zone, équation 14 says that
approximately n=59 items are required. For P*=.95, n=97.

Wilcox (1980b) also considered the situation Qhere §*=,1 and P*=.9
but where the usual corregtion for guessing formula score was used. It
‘was found that varying the actual probability of guessing the correct #

response had a substantial effect on the test length. I; one instance_ the
requ%red test length was found to %e 159, and in another it was 281. As
indicated above, an answer-until-correct ;coring procedure requires only

59 items without assuming guessing is at random. Thus, thé results reported

LRI
g

here are conside}ably more encéuraging than those reported by Wilcox (1980b).
. ’

s
>
K

3
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- ABSTRACT

K\/ | | » " .
— - 4 b\ . L d

Fhanér (1974) proposed an #proach to#easuring achievement where

v

the binomial error model, is assumed, and where the goal is to determine

-

whether an examinee's percent correct true score iS above or below a /
\ 5]

kndwn c'onsfant. Wilcox (1980b)‘: as well as van c;e“ﬁ"'Brink & Koele (1980),
point o;it that a substantially \'}arée: number of items might be required

when guessing is incorporated into F;Ianér‘s solution. The purposé of -
thi; brief note is to‘ derive :che exa;t sampling distribution of a p
‘c1osed sequenfia} procedure that solves the problem cons_idered b_y;Fhaﬁér.

We then show that the probability of a correct decision under the new -
pracedure,is exactly the same as it is, when Fhanér's procedure is.
. , applied. In addition, the number of observations: uncjer: the closed. .
o sequential procedu‘re is always less than or equal to the number

¥

required under the fixed sample size approach. In some cases, the

number of observations is considerably less. -

s

. Y
- *_, -
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* « . - *
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In the context of mental test theory, Fhanér (1974) considered the

problem of comparing a binomial prabability function to a standard or

kiiown constant. More specifically, it was assuged that a-random variable

”

x has a density given by - . .

. N x o Nex | - < .
co ) e (1)
and that we want to &etermine vhether . is zbove or below a known constant
,ﬂ<eo. (For a recent review of the binomial error model, see Wilcox, 1981.) The &

goalfin Fhanér's paper was to determine the miqimum N so that simultaneously,

<

N (N Nex _ o . ‘

I (x ex(l~6) 7> P, whenever 639°+5* ’ (2) ’ '

x=n" " ' e
and n-1 (N oy ¥ - 3

I ’x] o* (I-G)N ¥EP > Whenever B<gy-8* ) (3)

. | = i

* * . .
where % <P <1 and § >0 are predetermined constants, and n is an appro-

priately chosen passing score.

-

‘We note that in recent years, the problem considered by Fhanér has
generated considerable interest in mental test theory. Wilcox (1980a)

- -

» summarizes existing results. - . o
Suppose we choose n to be the smallest integer such that n/szo. ,
An asymptotic solution to determining N satisfying both equations'(Z)
and (;) is
. _ 2 * 2 .
. N=2e (16 )/(s) ' (4)

vhere ;3 is the Pf quantile of the standard normal distribution XWilcox,

197933. From (4) it is evident that N becemes indefinitely large as &

. approaches zero, )




~

When app]}ing Fhanér:s s91utioﬁ to achievement tests, it may be
ﬂeces§afy to choose &*small in arder t6>téke guessing into-account
(van den‘Bripk & Koele, 1980; Wilcox,‘1§80b). Th%s, in turn, might
mean that a relatively large ﬁumbef of items will be vequired. One
approach f§~this problem isito aﬁ?iy a- sequential précedure, but these
are optimal unde; circumstances.that might notbe met (e.g., Wetherill,
1966). A]sd, depgﬁding on the va]ges-of 8 and ao,wit is pgésible that
the numéer’of observattons wid1 be larger when a sequential procedure
is applied. . | B R

When a sequential procedure is used, it is‘common practice to aveid
%aking an inorﬁinately large number of obsgrvations by deciding in advance
the ﬁaxjmum‘number intrials that will be allowed. In this ;vent,
.howevgr, the observed number of successes ig_n;t given by the negative -
bi;omial distribution, as it ordinarily you]d be (e.q., wetheriil; 1966),
" and so we do not kn;w the exact probability of a correct decision about
whether 6" has a value above or below 8-

For the reasons éiven ab;ve, we consider a closed sequential

‘pr:ocedure for comparing ® to 8 - ;t, we~suppose that N and n are

-

determinéd in the manner already described. He}e, howe&er, observation;
are assumed to be taken one at a time until there are n successes or
m=N~-w+1 failures. Let x bg the number of successes and let Yy be the
nymber of failures Qhen sampling is terminated. Note that either x=n,
. in which case the possible values of y are 0,1,....,m-1; or y=m and

the possible values of x are 0,1,....,n-1. Our decision rule is that




-

AT

"

828, when x=pn; otherwise we decide that 6<8y- The purpose of this brief

note is to show that the probability of a correct decisionlinder this

closed sequentiél procedure is exactly the same as it is under the fixed
sample size solution proposed by Fhaner (1974). We a]sQJnote that the
expected ngmber of observations for the closed sequenti;} procedure might
.be substantially less than-Qhat vould otherwise be required. For related
results, see Alling.(1966), Armit;ge (1957), Spicer (1962), Wald (1947),
Anderson & Friedman (1960). ' )

The Joint Distribution of xand y .

Let xi=1 or 0, i=1,.... be a sequence of independent trials where
Pr(xi=1)=6. The exact d{étribution of x and y can be derived as foi\ows:
If x=n, then by the multiplication rule of probabilities, f(x,y|e),

the joint.probability of x and y, is given by .

\I'l

,
flxyle) =[] o (1)

( .
_ {n-1# n .
- { n_l'y) 6 (1"9)), for x=1'|, _Y"O, ey m-1. » (5)

In a similar fashion’

*

[m{;}';:X] (1._8)m ex for y:m’ X‘—"-O, -..., n"‘l. (6)

f(x,yle)

rd
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. The relationship between the closed sequential procedure '
and Fhanér's fixed sample size solution.-
- ‘/Let
~ 1 [ )
n- Fas)
h(e) = = Nl g% (l-e)N'x, 8<8y - 3
x=0 \XJ
N R i
N eX(-e)V%, 628,
X=n ;XJ ‘ co )
A <

In other words, for fixed N, n and any 6, hl(e) is the probability of
correctly determining whether the value of.e is above or below 8- We
show that th:e probability of a correct decision under the closed sequen-

T - tial procedure is given exactly by h(e). -That is; the accuracy-of both
procedures is the same, regardless of the vélue of s.

Suppose the closed sequential procedure 1'§‘ap'p'l1'ed and that 6<8;-

. Then the probability of a correct decisipn is .o
\ .Pr (y=m]9) N : . 7’ . &
n-1 : . - ‘
=3 [m;'};x] (1-6)" o C e S
. x=0 .
« . - - ,« T )
F;;om Patil (1960), this is equal to L L
i S
min-1)! X nim-1-x .7 s
- I ST (1-0) e
’ . ‘ X-O N ’ -
m"l 1
= 1- & —r (1-e)% o'
x=0 :




N-m 4
. N! Xrq_ayN-x . .
1-[1 - xzo ST 9‘(1 8} ]

it

n-1

N! X N-x
x§0 xTxyT o (1-e)

hte). *

-

~

For similar reasons, Pr(x=n|e) = h?e)‘yhen 6285- This completes the proof.
Next we note éhat the number of qbservatiohs under the closed sequen-
tial procedure is at most N, and on the average it is less. How much less
will, of course, depenqun 8 and 90. In some cases, the amount caﬁ be o
substgptiq}.

* 13 o e o —— - 2 e - ~ ~a -
o = 3

Suppose, for example, N=100; 85=-8 iﬁ which case-we”set'h=goyand'
m=2i; The number of observations under the sequential procedure ranges
from 21 to 100. Following, Fhanér (1974}, suppose an indifference zone
formulation of’theprob]eﬁ~is used with 6*=.05. From equation (4), an '
apﬁroxfmate lover bound to the probability of a coﬁrect decision is .894
* when the fixed sample size procedure is used. The results, given above
indicate that the ééme is true when thé c1osedlseduential‘procedure is — ~
applied. v - li
Figure'l shows a'p]ot;of E(ify), the expected number of observations
using the closed seque;tial procedure. As is evident, for certain values
of o, E(x+y) is conszﬂi;ably less than 100. As already noted, because
of guessing, even smaller vaIuesipf 5* might be deémed appropriate which
will increase the required value for N. Thus, the closed sequential pro-

cedure migh% bé an important and valuable tool in many situations. Figure

2 shows a plot of E(xty) when 85=.5, n=50 and m=51.

: 6 157
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v . A Concluding Remarks

. The new procedure might require 1;he same number of observ,atitons as
| Fhanér's, but this will be highly unlikely, paréicularly when N is large.
S - On the average, the humber of observations will be smaﬁer, amrf in some
cases, by a substantial amount. Thus, it might be possible to reduce the
difficulties pointed out by Wilcox {1980b), and van den Brink & Koele
(1980). Of course-at least N items must be available, and any sequential
procedure would seem to be inconvenient in certainesituations. "However, with
the current ‘interest in cfomputerized testing, the results reported here
might be useful. .
We also note that for a population of examinees, ‘our closed seq‘uen—
tial proce::iure is easily extended to the empirical Bayes framework con- .

sidered by Wilcox (1977, 1979b).. In particiular, suppose the prébdbility -

. function of every examir{ee's observed score is given by equatidns (5) and

, (6). It is readily verified that ' e
2 _ X
. 8 = Tty

is a maximum likelihood estimate of 6. Therefore,‘§2 is a maximum 1ike-
y 1ihood estimate of 62 (Zehna, 1966). Let 51. be the maximum 1ikelihood
estimate for the ith randomly sampled examinee, 1"—:1,...,m. It follows

1

that M1=m' 2?51. and M2=m"1>:§zivcan be used to estimate the first and second -

moments of the distribution of @ over the population of examinees.
If weassume the density of & belongs ta the beta family,.we can
also estimate test accuracy as is done by Wilcox (1977) and we can esti-

mate test reliability in the manner described by Huynh (1976) by noting

that a negative binomial density function cbmpounded by a beta distribution

.
'




. yields the inverse Pblya-Eggenberger probability function (e.g., Sibuya,

. 1979). ‘The details are straightforward, and so further comments are not .

made.




References

Anderson, T. W., & Friedman, M. (1960) A limitation of the groverty of

the sequential probability ratio test. In I. 01kin (Ed.) Contribu-

tions to Probability and Statistics. Stanford: Stanford University

Press.' . . . -

~

Alling, D. W. (1966) Closed sequential tests for binomial probabilities.
Biometrika, 53, 73-84. ’ ’

~
~ -

Fﬁanér, S. (1974) Item sampling and decision making in achievement

pestfng. Bri%ish Journal of Mathemetical and Statistical Psychology,
27, 172-175.
Huynh, H. (1976) On the reliability of decisions in'domain-referenced

testing.” Journal of Educational Measurement, 13, 253-264.

Patil, G. P. (1960) On the evaluation of the negative binomial distri- -

bution with examples. Technometrics, 25'501-505.

Siﬁuyaﬁ M. (1979) Generalized hypergeomefric; digamma, and trigamma

' distributions. Annals of the Institute of Statistical Mathematics,

’

31, 373-3%0.

Spicer, C. '(1962) Some new closed sequential designs for clinical trials.

Biometrics, 18, 203;211; : ~ =
> t

&

Van den Brink, W. P., & Koele, P. (1980) Item sampling, guessing and

Becision-making in achievement testing. British Journal of

fathematical and Statistical Psychology, 33, 104-108.
Wald, A. (1947) Sequential analysis. New York: John Wiley.

Wetherill, G. B. (1966) Sequential methods in statistics. London:

Halsted Press.

160

P

oy




. Wilcox, R. R. (1977) Estimating the likelihood of a false-positive and

false-negative decision with a mastery test: An empirical Bayes

. apprgach. Journal of Educational Statistics, 2, 289-307. ¥

Wilcox, R. R. (1979) Applying ranking and selection techniques to

determine the length of a mastery test. Educational and Psycho-

.- Togical Measurement, 39, 13-22. (a)
Wilcox, R. R. (1979) On fa]se-pc;sitive and false-negative decisions ~

~ with a mastery test. Journal of Educational Statistics, 4, 5§-7§. (b)

;Nﬂcox, R. (1980) Determining the length of a.criterion-referenced test.

Applied Psychological Measurement, 4, 425-446. (a) N

Wilcox, R. R. (1980) An approach to measuring the achivement or pro-

ficiency of an examinee. Applied P§_ycho1og1'_§a1 Measuremeht, 4,
241-251. (b) .
. -~ Wilcox, R. R. (1981) A review of the betQ-binomial model and its

extensions, Journal of Educational Statistics, 6, 3-32.

<

Zehna, P. W. (1966) Invariance of maximum likelihood estimation. Annals

- a of Mathematical Statistics, 37, 744.




Aruitoxt provided by Eic:







[ . 4 Fe s - e Y
- N - - i PR
i - Y . .
: % . 5 AN ~ > .
Aot weki : . ey
- ) N 7 .
- - vt .
. . JRA A
- Y S 7 L
* 4 - W= ~ e
~ > -
- 3§ . ’
- -
.
- - .
. RN
.
- .

. | _ , o ¥ o
oo " A CLOSED SEQUENTIAL RROCEDURE FOR- —- - — — -~ < - — -

ANSWER-UNTIL-CORRECT TESTS -
- I .
. i 3
e . i
i ) Rand R. hhl\cox‘ .
’ ‘ ' _ R :
.. .
R ’ J ® ’ ‘ [
- ! : .
-~ ‘4 . .
\‘ ‘ * . . ~
k ) ¥
. « _
. * . ¢
\ ;- |
( ]
' ) AN -? ’ -
- . ‘

PAFullToxt Provided by ERIC




.- . e S

¥ - >

* g ABSTRACT - _ . . .

Hilgex (19@) proposed a latent structure model for answer—untﬂ-
’ correct tests, that can so]ve varigus measurement probTems mc]udmﬁ‘ correct-
ing for guessing wi thout asstming guessing is ab. random -This péper pro-

poses a closed segyents rocedure for est1mat1ng true score that can be

b -
'

used in conJun%;tmn with an answe‘r—untﬂ correct test. For eriterion-
B N ~ 4 :
referenced tests where the ngT is to “determine whether an examinee's ot
(Y - » -~ . .
. ) L - /
true score is above or below a known constant, the accuracy of the new . /

procedure is exactly the same as a mors-conventiona] sequential soiution. s
The advantage of the new procedure is that it eliminates the poss1b1hty

) of usm;‘%‘fngydmate y large numoe-r of t;ms when in fact a ]arge number

@f items is not needed; typical sequenti a] procedures a]ways allow th1s

poss1bﬂ1ty. In a3dd1t1on, the new procedure appears to compare favorab]y

™

to trad'ft]ona] tests where the number of 1tems to be administered 1s

kd
.

.
» -

fixed in advance. . .
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8 1. “INTRODUCTION _

e

Consider a mu]tip]e-choice test item wifﬁ t alternatives, one of
Awhich correSponds to tﬁe co;rect respon;e UdHé@ an answer—untll correct
(AUC) scor1ng procedure, an exam1nee chooses alternatives until the correct
'> response is seleeted. In the past, th1s has been eétomp]1shed by hav1ng
the examin%e erase a shie[e on en answer sheet; the examinee knows imme-
diately whether the correct response was chosen. If it was not, the
examinee erases another shield, and fhis proéess continues untf] the cor- -
.rect alternative is ghosen. Another way of administering AUC tests is with
a reeently developed pen that is ‘used in conjunction with a specially
treated answer sheet. Theﬁexam1nee marks his/her selection which causes
a previously invisible mark to appear on the answer sheet If the mark
signifies an,incorrect choice, anofher alternative is chosen. “An_optical
scanner ean then beuuseq.tovcount the number of attempts an examinee took
on each item of the eest, or, of course,'the test_can be scored by hand.
A tﬁird;way of administering AUC tests, and the—otfe that is particularly
_relevant to this paper, is by computer. ~ - ]

AUC tests appear‘to have several advantade;. Past inyestigations
suggest they enhance learning (Pressey, 1950), increase reliability (Hanna,

1975 Gw]man & Ferry, 1973), and under certain assumpt1ons, they can be

«ﬂg;d to correct for guess1ng without assumifig guessing is at random (Wilcox,
2

1981a).- Some imp]ications of the assumptions made by Wilcox (1981a) have

been empﬁriqa]ly investigated, and the results suggest they are frequently

reasonable (Wilcox, in press, a).

~— -
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‘ The ability to measure and correct the effect; of guessing is parti-’
. cularly important.in criterion—referencec'i testing wherg the goal is to
- determine whether an examinee's true score is above or below a known
constant (van den Brink & Koele, 1980; Wilcox, 1980). Because of guessing, ’:‘
¢ an unrea]ist}cally 1arge number of items might be required to ensure a 7
’ reas&nab]y accurate test.

~

The goal in thi§ paper is to describe a closed.sequential testiﬁg
procedure that might Le used in conjﬁ;Etion with Wilcox's correction for
guessing formula score. The results reported here generalize those re-
ported in Milcox (in press, b). To help motivate the new procedure, a
traditional ;equential procedure is also di§cussed. ~

While the potential advantages of sequential procedures is_known
(e.g., Wetherill, 1975), they have the préctical disadvaniage of possibly
. requi’ring an even larger number of observations than wou]d‘be used under

a fixed sample size approach. On the average this may not happen, but there
is a Positive probability that a sequéntial procedure will need more obser-

vations. Usué]ly this problem is avoided by deciding in advance the maxi-

mum number of observations that will be allowed undér a sequential procedure,

la: but in this case the.appropriate probability function may not be known.
The closed sequential procedure descrig:d below is intended to correct ) .
this pro#em when an AUC test is being used.
- 2. ASSUMPTIONS AND GOALS

This section gives a more 6}ecise descyfpfion of the assumptions

being made and the goals of the test. - ' .
‘ Consider a domain of sk?11§, and suppose évery skill is represented:
. by a multiple choice test item hav%ng t alternatives from whiéﬁ tc:) choose,‘

%
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. one of vinich is correct. Let t be the proportion of skills a specific
examinee has acquired, and let P; (i=1, ..., y) be the probabi]ity that the

v

examinee chooses the correct response on the ith attempt of a randomly - "

é\‘ ’

choseﬁﬁgtzm Wilcox (198la) assumes that if the examinee has acquired the
skill correspond1ng to a randomly sampled item, he/sht gives the correct \
response on the first attempt. If the examinee does.not know, it is assumed :
that at most t-2 distractors can 'be e]imingted? and that the examinee

V4
guesses at random from among those that remain. This is, of course, an S~

over simplification of reality since the model does not allow for misin-
formation, nor the possibility of knowifg and ipadvertant]y choosing an
%ncorrect response. Qther "latent structure mode1s have been proposed
that include errors at the item level sgch ai'misinformation, but these
_ models make -certain assumptions that may not hold in‘many'situations.
. (See Mo]enaar;:“l%l; Wilcox, 198la; in press b.)
Based on' the above assumptions, it has been shown that T= pl Py
(Wilcox, 1981a). Th1s suggests that for an AUC scoring procedure > if there
are x, items for which the examinee is correct on the first attempt, and

if there are Xo items for which the examinee is correct on the second

attempt, t might be estimated with .
T = (x=%,)/n - (%'1)

vhere n is the number of items on the test. The appeal of equation 2.1
is that it corrects for guessing without assuming guessing is at random.

Wilcox's model implies that

Py 2Py ... 2Py (2.2)

. o ‘//188’




and empirical investigations suggest that this inequality will frequently be
reasonable (Wilcox, in press a). MNote that if (2.2) is assumed, a maximum
1ikelihood estimate of t, assuming X3 and Xy have a multinomial distribution,

can be obtained via the pool-adjacent-violators algorithm (Barlow, et al.,

L .

1972) which is

" é(xl—xz)/n, X12%o
T 0, otherwise

~
N

(2.3)

The two most common goals of a criterion-referenced test are esti-

mating true score, and determining whether t is above or below a known

- - .
constant, say 74 (Hambleton, et al., 19¥8). The remainder of the paper
" considers these problems when a sequential or closed sequential procedure

-

is used to estimate <. {

3. A SEQUENTIAL OR INVERSE SAMPLING PROCEDURE

This section summarizes some existing results on estimating P; under
a conventional inverse sampling prﬁcedure. The main reason for inc]udiﬁg
this section is to motivate the’closed sequential procedure described in
secﬁion 4, .

Here it is assumed that an item is random]& ngpled and the examinee
responds to it according to the AUC sco}ing procedure previously described.
Once the examinee identifies the correct response, another item is randomly,
sampled and administered, and the process continues until there are N items
for which the first‘a]ternative chosen by the examinee is the correct
response. Once sampling is terminated, let y, be the number of items for
which the examinee chooses the correct reéponse on the second attempt of

an item, and ]et.y3 be the number of items for which more than two attempts
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were needed. The probability function of Yo and Y3 is negative multinomial

7\\\,Mhich is dﬁvén by .

o (N-T4y 4y o)
A 273" . N Y5 Y3 -

éyhere p, and p, are defined in section 2, and 9=1-p;-p, (e.g., Sibuya, 1964). »

éiroperpies of this distribution are summarized by Sibuya (1964), Mosimann
(1963), and Johnson & Kotz (1969). Séé, also, Olkin & Sobel (1965), Olkin
(1972), and Lgcoullos & Sobel (1966).

The maximum 1ikelihqod est{métes of p; and p, are bl=N/(N+y2+y3) and
§2=y2/(ﬂ+y2fy3), respectively. As previously mentioned, 1=P1-Pp, SO the
_maiimum 1ikelihood estimate of the examinee's true score is %=(N-y2)/(N+y2+y3)
(Zehna, 1966).

fﬁgnsider the problem of determining whether t is abovg\gr below Ty
The gbvious solution is to decide 1>ty if and only if 1>75. This is the
typical pre of decision rule used with crité&ion—referenced tests, and

it is the solution used here. Thus, for 27g» the probability of a corfect

decision (PCD) is
R = ﬁ f(yzs.Y:),lpl:pz) (3-2)

where A={(y2,y3): 23;0}. For <ty the PCD is just 1-R.
Given Py and P> the PCD can be compared to the usual fixed sample
size solution, and some comparisons are made in the next section. The

expected number of observations is also easily computed, and it is fiven by

N+(p,+q)/p,. .




An appeal of sequential procedures is that the expected number of
‘observations can be substantially less than what is needed under a fixed
sample size approach. However, as. previously indicated, theré is a posi-
tive probability that the actua\ number of observations will be Iéfge.

In practice this problem is avoided by determining in advance the maximum
. total number of observations that will be allowed. However, if sampling
is terminated when Nty +y 5 reaches a predetermined value, the joint pro-
bability function of Yo and ) is no ionger given by the multinomial
distribution. The next section proposes a possiSﬁe solution to this

problem when determining whether t is above or below 9
. ' ~

4. A CLOSED SEQUENTIAL PROCEDURE

Suppose the sequential procedure in section 3 is used in which case

<1 is decided if N

N-y2
————— T
N+'y2+'y3 N 0

/

)
Rearranging terms, the decision <1y is made if

N(l—ro) < (1+10)y2 totgYs (4.1)

Thus, once (1+10)y2 Z_N(l-ro), or T3 3_N(1-10),_there is no* point in

: &
sampling more items because the decision <1 will be made no matter how
well the examinee performs on the remaining items.

Next suppose the inverse sampling scheme is modified so that sampling

I
-

terﬁinates vhen y1=N, or ysz or yg=m vhere yq is the number of items
fortwhich the examinee is correct on lhe first a]ternativgijéhosen. For

"the moment M and m represent arbitrary integers.

>
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The jgint probability function of yl, yz;and y3 can be derived in the
same way as was the distribution in Wilcox (in press, b), and so the details
are not given. An alternative derivation is also available by viewing the
process as, a random walk on a three dimensional lattice, but again the
details are relatively straightforward, and so they are omitted. The

result is that the joint probability function is given by

(N"1+.)72+y ooN - ,
3 y

(N-151y2!y3! P ;@ q 3 (yl=N,0§y2<M,05y3<m) (4.2)
(y;#4- vy ) !
.Yll (M-1) !.Y3l

Yo MY
ple,d 3 0y <N,y,=M,0<y 3<m) (4.3)

(yry,4m-1)1

1 452 )M - ‘
ylgyzl(m_ﬂ! p1 p2 q (05y1<N,05y?<F4,y3 m) (2.4)

The discussion of the decision rule under the sequential procedure
suggests that the closed sequential solution be used with M;N(l—ro)/(l+ro)
and m=N(l-rO)/rO. If sampling terminates because y2=M or ys=m occurs, the
“decision <1 is made. If sampling stops because yl=N, deéide 74 if
and only if (N-yz)/(N+y2+y3)3;0. This is the same decision rule used
under the sequential procedure described in\;ection_ﬁ, but. this rule can be ~
Jjustified based solely on the probability ;unction in equations 4.2,

4.3 and 4.4. Yo see this, note that the_maximum Iikeiihood estimate of

pi(i=1{2,3) under the closed sequentjalprocedure is

. .Yh.]; /
G . 4.5
P .Y1+.Y2+}’3 (4.5)




where one and only one of the yT'S has attained its maximum value. By
the choice df M and m, the decision T<Tq is made if 92=H or ys=m because
equation 4.5 yields an estimate of T=P1-P; that is less than g If
¥4=N, the decision 1>t is reached if (N-yz)/(N+y2fy3)3;0.

The above digcussion reveals the important result that the PCD under
the closed sequential procedure is exactly the same is it is under the
sequential procedure. To see this, note that for 127, the PCD under

the clbsed sequential procedure is

N-y N v
X 2 p p2gq

72 Y3
A WYtY3 1 72

(4.6)

which is the same as expression 3.2. It follows that the PCD is also the

-

same under the two procedures for T<Tq- N

A Comparison of the Fixed Sample Size and Closed Sequential Solution

For a conveptional item sampling model where the total number of items
is fixed at n, the random variables Xq and x2, which were defq;éd in section 2,
have a multinomial distribution. Thus, when comparing t to 0 and when
210> the PCD is
n_ -
n!p:lp:?q 7%

g x1!x2!(n-xl—x2)!

(4.7)

v

where B={(x1,x2): Ox;-xz)/nzyo}. For t<1 the PCD is zust one minus

—_ *

this quantity. ’ .

To gompare the fixed and closed sequential procedure, the PCD was ‘\)
calculated for n=14, N=10, 4=.7, p1=.é§\:nd .0752p,<.15.  This interval
for p, was used because i% is consistenil ¥ith the as'sumplion in equation
2.2 vihen P;=-85. The results are shown in Figure 1 where the curve PS and

P are the PCD under the closed sequential and fixed sample size procedure,
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- ! -
respectively. As can be seen, the closed sequential procedure 1is consis-

tently better. As an additional comparison, the PCD was computed for

p1=.7 and .155p2§.30. The results are plotted in Figlre-2 and again the, \

closed sequential procedure is consistently better.

Y
]

CONCLUDING REMARKS

It has not been shown that the closed sequential brocedure will always

improve upon the fixed sample size approach to criterion-referenced tests
when Wilcox's answer-until-correct scoring procedure 1is used. However,
511 indications are that given n, we can choosé N, M and m so that the
number of observations under the closed sequential procedure will be at
most n, and yet it will give superior results. Moreover, the expected
number of observations will be less. Thus, in situations where computer-
ized testing is feasible, it would seem that the closed sequential proce-

dure should be given serious consideration.
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. . ABSTRACT

4 . - &

When comparing k normal populations, an investigator might want

to know‘the4probabilit§_that the population with the largest population

mean will nave the 1ar§est sample mean,’_Put another way, wnat is the
brobability'of correctly identifyﬁng the most effecti;e treatment?
The paper describes and illustrates methods of approx1mat1ng this
probab1l1ty when the var1ances are unknown and possibly unequal. The
results described heraffgn also be used to measure the extent to which

&

the popu]at1ons differ for one d@nother.
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Consider k normal distributions with means u; and variances a

c? (i=1,...,k). In psychology axd education i{isv‘common practice to
test the r;ypothesis that Moo THy - ‘If the null hypothesis is rejected, .
there are many iﬁstances when an investigator wants to deten;mine which
of the distributions has the largest mean. If for example, three

| methods of treating depression are being compared, or perhaps threeé .
methods of teaching statistics, an investigator migh% 'start by te;ting '
whether the. population means are equal. If the null hypothesis is '

rejected, interest shifts to determining the most effective method.
4‘ &

The obyimg choite is the treatment with the Jargest _sample mean. Once

a treatment has been selected as the one most effective, it is only

e — an - RS —. P — A e e e maa——

nat’t‘Jravl “t‘ogwant to determine t;le probabiiit_y thét t;ié mos_t gf;énchtive
. . a, treatmentawas indeed selected, i.e., we want to &etermine thea probability
that the distribution with the largest population mean will hév,e, the
..,t 1ar;gest samplg mean. ﬁote that if this probabﬂié:y were known exactly,

we would have a measure of the e‘xi:ent to which the treatments differ

from one another (cf. Hays, 1973, pp. 481-491, C']evreland & Lachenbruch,
1974). :

Typically, the approach to the prob]egn Just described is from the
point of vie.w of designing an experiment (e.g., Gibbons, O1Kin, &

E-3

Sobel, 1977). In pargzi.cular, procedures have been devised for deter-

°m1’m’ng how many observations are needed so that an investigator can
be reasonably certain that the most effective treatment is identified.
The normal case has been considered by Bechhofer (1954), Bech’hofer,

. p Dupnett and Sobel (1954) and Dudewicz and Dalal -(1975). These solutions

are similar fp determining pawer, th there are important differences.

!
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4

Also, these solutions are high]y conservative in the sense that if
M[k] ™M [k-1] 2 6* the probability of a correct selection is at least ) J
11z .

P* where u[ka,..zy[13" are the population means written in descending

order and where §* and P* are predetermined constants. The value of

6* represents the smallest difference bety ‘

experimenter believes worth detecting. In actugiity the difference

"[k]""[k-]] might be cénsiderablx larger than &* in which case fewer

" observations are really needed to guaraﬁtee that the best treatment .

is selected for use.

} I
Recently, Tong (1978) proposed.an adaptive sequential approach to

the problem of identifying the most effective treatment for the case of }
normal distributions having.a common known variance. The mofivation

for the procedure is to take advantage of situations where up, -y s

. X % [k] [i]
(i=1,...,k-1) is Yarge. The basic idea is that if the population means -
-are substantially different fewer observations are needed than when

the differences are smll, say equal to &*. A crucial step in applying »

this solution is estimating the probability fhat'the digtribution with

the largest population mean will produce the largest sample mean. A
method of estimating this value is available, but it requires numerical
quadrature which can be rather expensive to use. Accordingﬁy, Tong
uses bounds on this probabi]ity (01K§n, Sobel, & Tong, 1976) that ~ .
are easily computed: The purpose of this bapér }s to describe, and
’1llgsirate mgthqu"of estima?ing similar bounds when the’vaﬁzﬂnces are -

=

unknown and unequal. / - _ -
re " )
»




. - Description of the Procedure

1
Let X; 3 (i=1,....k; 3=1,...,n+1) be n+l randomly :ampleg observa-
tionsnfro'm the ith normal distribution. Compute >'<]. =.Z xij/"’ , ,
P - gi)zl(n - 1). For technical reasons exg;:ined below, it ' ’
1is ng;}assai‘y to assume that n+lis]?. This is not a serious restriction

in practice since the possibie values of Xy are usually bounded. If,
for example, there are known constants a and b such that Of__af_xijib,
and {f every X313 is. divided by atb, s]2 will be less than one, and the
results described below can be dpplied.

Next compute

-

_ 3 o “ )
where . ) -
H
. e T NG
A9 =8 T eer T A =Cy

and . T )
~ c1=n+fnz-n(nﬂw-532')_ K

n(n + ]) f” ' \ ! : *
For technical reasons Dudewicz and Dalal sglect the treatment with the 7

largest ;<1- value as the one that has the largest mean. In prdctice this

. > R

will usually be the same as selecting the treatment with the largest -

& -

- sample mean. L ‘ . .
“ If ;c(i)wis the value of #1). for the populatien having mean ripr —
.
then the probability of a correct selection (PCS) is the probabigity’,,‘a_ﬁ .

that the’ distribufion with mean Mrk] will have the 1arge§t ;<1 vaTuel. This

s -

probability is given by . .
. s .7




Pr(i(i) < i(k), i=1,...,k-1)
= Pr(i(i‘) “M[TEX(k) < B[] s e eske) (2) .
where GE; “[k}’”[i] (1=1?...,k-1). ,Erom Dudewicz and Dalal (1975,
p.38), X714 has a t distribution With v=n-1 degrees of freedom.
Thus, (2) ,is equal to K
k-1 .
L. LNCE 8,)f (2)dz . (3)
i= ‘

where F and fv are the cumulative di;tribution and den;ity function,
respectively, of a t distribution with Q degrees of freedom. (In
Dudewicz and Dalal's notation we are setting h=6*=1.)
- From a theoretical point of view expression (3) follows from
Theorem 4.1 in Dudewicz and Da]a] which assumes that a two-stage
samp11ng procedure is be1ng used In the f1:;t stage n observattons
_ are taken, and the second stage cons1sts of* taking n;=n additional

observations sampled from the ith normal popu]at1on where

=max [n+ 1, s; ] . Q%

'l

A slightly more genera} expression for C; is also required, namely,

ng - 1+ A, - 1)2 -(ni-'l)ni('l~si)

(n_t - 1)ni ‘ (

In many situations a two-stage sampling procedure may be expensive or

C_I"

4mpractical, and so we have outlined how this problem might be avoided.
However, when samp11ng is from a tru]y norma] d1str1but1on, a two-
stage procedure must be used in conJunct1on with the more general ex-
- ' . . tox
preésion for Cov | \_J |
To estimate the probability of identifying the most effective

tfeatment, {.e., the probability that the population with mean u[k]

.t
L3l
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—

. produced the largest ;(_; value, simply replace 8s in equation (3) with

8 i =Xy, 1~Xp s Xpaq 1 i '
5 x[k] x[1] yhete x[1] is the sample mean correspond1ng‘to the

population that produced the ith largest ;i value.

-

Bounds on the Probability of a Correct Selection

So far, nothing particularly new or unusual has been described;
we have merely followed the deve]opménts.in'01kin, Sobel; and Tong ..
(1976). The only difference is that the procedure in,pudewici and Dalal
(1975) was used to handle the unknown and possibly unequal variances;
O¥kin et al. assume the vériances are known. The main concern in this.
section is evaluating (3). This can be done with numerical quadrature

— it

techniques (é.g., Dudewicz, Ramberg, & Chen, 1975), but this can be

— e e o —m a P

expensive, particularly when the degrees of freedom are small. Accordingly,

. we derive ﬁpper dnd Tower bounds on (3).

. Our main result can be described as follows: Let

p; = I F (z + 6i)fv(z)dz d

9% =1 - P

' k-1 . - )

) 1=] ¥ I = O

Q, = max ; q; ; > where the summation is from 1 to k;ﬁ%Y/ - "///
i oiF - B -
Values of the integral in the definition of py are given in a table in

Dudewicz and Dalal (1975, p. 52). Reca]%ing that the PCS is given-
X -

\ b.y (3) > it will be shown thatﬁ ' £ - Y l { \
| ’ .
(4)

RS 21 -0 + 0,




S 1 —
have that 1 F (z+6 ) 1s a Schur -concave function of the 6 's wh1ch

- p
To establish (4), the following definition is required. Let !
A?(a]?;..,ak) and E?(b‘,...,bk) be any two vectors, and let A P2 22 ]
and b[]}zp[233,..3p[k] be the components of A and B written in ascending
order. A function ¢ is Schur-concave if

r

2] i< z b[1] for r=1,...,k-1
and
Ya =) |
a. = b -
j=1 1 451 |

implies that

¢(A) > ¢(B) ‘

(e.g., Marshall & Olkin, 1979). N

Frgm Theorem 6.2.5 and Coro]]ary 1 in Tong (1980, PP ]]0 ]11) we

i=1 »
1mp11es that (3) is Schur-concave as well. Thus, an upper bound to

(3) is .

k-1 - . .
ffva (z + 8)f (z)dz . ' . (5) .
k-1 : o
where & =.§51/(k-1)., The integral in (5) can be evaluated-via the tables
=1 - -
in Dudewicz and Dalal (1975)

From Kimbali (1951) a lower bound (“(3) is

k-1 : _
it fm F (z + 8, )f (z)dz . : 5 (6) :
i=] :

But Theorem 7.1.4 in Tong (1980} p. 147) implies that
PCS > 1 - Q) + max i;jj"’_va(z + aj)Fv(; +6.)f (2)dz. -

J . -

-Applying (6) to, the sumfiation in this last inequalfity establishes (4).

For certain refinéhentg of (6), see Olkin, Sobel, and Tong (1976).

£
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.Some Illustrations -

To illustrate how the bounds on the PCS compare to the actual
value, Monte Carlo techniques were used to evaluate (3) using arbi-
trarily chosen 61 values. Column 1 in Table 1 shows the resulting
approkimat1ons té (3) based on 2,000 iteratioris. Our computer program
was checked by approximating some of the values in the -tables reported
by Dudewicz dnd Dalal (1975).

Table 1 suggests that when the value of (3) is r?f‘dﬁvely small,
the upper bound given by (5) will be fairly close to the value of (3).
More importantly, when (3) has a value close to one, th; bounds given
by (4); (5), and (6) yield a reasonably short interval which contains
(é). The implicetjen is that if, for-example, we want to know whether
the est1hated PCS is at least .95, (4), (5), and (6) may give a fairly
good indication of whether this is true. g

As a final {1Tustration, we reanalyze some data in Winer (1971,

p. 183). The goal was to compare three methods 6fteachinga‘§pd there .
were 8—obse;vations fdr each group, The observed scores are-shown in ‘
Table 2. / _

Using the fjrst seven observations in each group, we fibd that .

€)=.2885, C,=.2959, and c4=.2852. Thus, x,=-.7060, X,=4.112, and X

1 3
and so aFcording to the procedure in Dudewicz and Dalal, method 3 \
would be chosen as the most effective. (It is readily verifted—that ~
s§<7ﬂfor i=1, 2 as was required.{ The questiqn arises as to how certain
we é;n be that method (3) is fndeed the best. Since»§1=4.75, §2=4.625, “ o
and %;=7.75, we have that 6,=3.0 and 6,=3.125., From a table in Dudewicz

—and Dalal (p. 53), the value-of (5) is approx1matefy .93." The lower
) .

i

- . a 1 8 74 * . -

4
=6.148, .~
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bounds given by (4) and (6) are both .925. Thus, in this particular
instance, we have a very good approximation to the estimated PCS.
If an 1pvest1§ator wants the PCS to be even higher, the data indicates

that additional observations must be taken.:’

- ~ Concluding Remarks

L]

-

It is possible to sequentially estimate the PCS by applying the
procedure described here in the manner proposed by Tong (1978). Many
of Tong's theoretical results extend immediately to the present situatijon,
and so furgher comments are omitted. !
Anotheg _point is that there are alternative choices for the Cy \
values (e.g”, Dudewicz, Ramberg, & Chen, 1975), but at present. there
seems to be no compelling reason for choosing one procedure over
. another. For a third poss?b]e procedhre, see Bishop and Dudewicz (1978).
, Henery (1981) proposed a method of esf1 ng the PCS when the
distributions are normal with a common kno&;mj:j;;;:} He checked
the accuracy of this procedure by approximating various va]ues in the
tables reported by Bechhofer (1954) -~ sanﬁlar\zagéks were not made by
‘Henery He got fggsonab]y(ﬁggh results for k=2,3 and when the PCS was

\ lTess than or equal to .82, but otherwise the approximation was very . .

i poor. Despite this negax}ve finding, a modification of Heﬁéry's pro-

f"M

‘cedure was *tried on the case of unknown and unequal variances, but there

r\ is no inditation that it would ever have any- practxca1 value. At the

.

moment, the best approach seems to be to use the bounds on the PCS
given by (4), (5), and (6). ‘ ’ -
‘ana11y, as alluded to earlier, the results given here can be used »v‘i'

to measure the extent to which k.normal populations differ_from one °

3 . &
»

-
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another. If ByTHST ee THys the PCS is equal to k™) its mimimum

possible value. As the 8, values increase) so does the PCS (cf.

Bedges, 1981).

o
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ABSTRACT - : ‘

H

" Based on recehiéy/published'bapers, one might be tempted to routinely .

apply the.betajbinomia] model to obtain a single adpinistration estimate

of the‘reliability of a mastery test. Using real data, the paper itlus-

trates two pracfica] problems with estimating reliaBility in this manner.
/ N S .
The first is that the model might give a poor fit to data which can seri-

ohs]y affect the reliability estimate,'andthesecond is that inadmissible

e

estimates of the parameters in the beta-binomial model might be obtained.

Two possible solutions are described and illustrated.

LY

~ -
’




1. INTRODUCTION

¢

[}

In recent years, effqrts have been ditrected toward deriving ways of

studying apd characterizing'mastery and criterion~referenced test§. A

summary of the statistical and psychometric techniques that have evolved

can be found in the 1980\sgecia]'issﬁe of Applied Psychological Measurement
gsee, also, Hambleton, et q]., 1978). One approach that has, received con-
siderable attention can be describeé as follows: Supposé two randomly

parallel test forms both consist of n dichotomously scored items. For

_ ) N .
a randomly sampled examinee, let x and y be the observed scores on the
two test forms, and let f(x,y) be the joipt probability function of x
and y for the pbpu]aiion of examinees. If the same.passing score, say

Xgs is usedon both test forms, the proportioh of agreemént 1is defined

)

to be
n n ' X~ xp-1 ’
P= 3 r flx,y)+. ¢ . flx.y) . (1)
X=Xq Y=g ' - x=0 y=0 .

Many other methods have been proposed for characterizing magtery tests,
but at a minimum wé want P to be reasonably c]o§e to one.

Frequently it is difficult to admini;ter two randomly parallel tests
to a random sample of examinee;. Accordingly, eﬁforts-have been made to‘
derive an est{mate of P baséd on the observe% scores of only one test
form. A genera} approacﬁ to this problem is és fo]]owsE For a specific
examinee, assume‘the probabilify of an observed score X is f(x|e), where
® is some unknown parameter, gossib?yAvector valued. For the randomly

parallel test, let f(y|e) be the probability of an observed y, and sup-

pose f(x|e) and f(y|e) are independent and they have the same parametric

L4
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]

form.. If Jke) is the density function of ¢ over the population of exam-

inees, then .

f(x,y) =

?

}

sf(x{e)f(y|e)g(e)ds. i . (2)

4

e

possible to estimate g(e) which yields an estimate of f(x,y). This in.

turn, yields an estimate of P via equation (1). -

In the statistical literature, the {Ang]e administration estimdte of

P describe above is known as an empirical Bayes approach to prediction

For general results on prediction analysis.,, see Aitchison and
dee L pini /'7;7,J/ S - ’
Dunsmore (19757’:

/

Huynﬁ‘(1976) has given a deta11ed account of how to est1mate.P

for the special case where f(x|e) (and f (yle)) are assumed to be binomial,

and where g(e) is aysumed to belong to the beta famz]y of d1str1but1ons. ;

Note, however that Huynh concentrates on estimating Cohen's kappa (Cohen,.

r

1960), rather than P, once the est1mate,pf f(x,y) is available (cf. D]vg1,

1980) Since Huynh's paper, several 1nvest1gat1od§ of the beta binomial’

model have been reporfed that are relevant to estimatipg re]1ab111ty via

equation (2).

£

For example, Subkoviak (1978)[gpmpared it to ‘three other

.estimates of P and conc]uded\that all four methods gave good results,

)

but that the beta-binomia] model seemed to be the ngt for genera1 use,

Additional empiricai support for the beta-binomial

nodel can Qe found 1in.

Gross and Shh]man (1980)}. For further results and comments on P,Jsee

Atgina and Noe (1978), Huynh (}979), Divgi. (1980), Traub and'ﬁowley (1980),
and Subkoviak (1980).
see Wilcox (1981).

For a recent review of the beta-binomial model,

' 197
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‘Once a specific form for f(x|e) and g(e) is assumed, it is frequentTy.

"
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. L Based on the stﬁc_h’es cited above, one might be tempted to routinejy -
- ! [ ¢ .
apply, the beta-binomial model when estimating the proportion of agreement

. or some related coefficient Such as"Cohen's’ kappa. In practice, though,
there are at least two practical prob];ems that might arise. First, the

beta—b1nom1a1 model m1ght gwe a poor fit to the data (Keats, 1964a)

a7

wh1ch, as ﬂ]ustrate low, might affect the estimate qf P. Second,
[
~ - the est1mate 0 the parameters 1n the-beta-binomial model &mght be inad-

missible. That is, they xmght be negatijve even though the model assumes .

" théy are positive.  Negative estimates car, occur even when the model
i Al : . g ) < e maet R

holds, or the_y:frnight~ occur because the mogel is completely inappropriate.

In some instances it might be possible to correct this problem by replacing

4

the estimates used bjl Huynh (1976) with the approximation toAmaxﬂnum Tike-

1ihood estimates described by .Griffiths f1973).‘. However, .Griffiths iter-
. N 2 ’

. ) ative estimation procedure might not correct the problem since it can
' converge to inadmissible estimates even when the model holds (Wilcox, 1979).
. The purpose of this paper is to describe and illustrate a partial solution

to these two problems. _ .
N : . . N b
2. THO ALTERNATIVES TO THE BETA-BINOMIAL MODEL
|- -

Temporarily consider a single examinee responding to n dichotomously scered

. -
- items. The binomial error model assumes that

S (C DR s Sl (3)

-

This assumption is the'oretice]]_y justifieq when items are randomly sampled

. from an infinite item pool (or-a fim‘te poo] with replacement), the exam-

. inee's responses are mdependent from one another, and the probabﬂ1ty of

a correct response is 8 for every randorrﬂy sampled 1tem In many instances -




. [
s b

. itemg are not randomly sampled, and even when they are) it is customary

»

for every examinee to respond to the same n items. Thus, it is. not sur-
pr{sing to find situations where (3) gives unsatisfactory results. //
Whep trying tq find a -probability funct{on that gives a good fit to
" data, pfobab]y three of the Qest knghn and most frequently employed dis-.’
/ tributions are the binomial, Poisson ana negétive—binomia] (Johnson and
v Kotz, 1969). Thus, when the beta-binomial ;mde] is unsatisfactory, it is
reasonable to consider rep]acingf(B) With a Poisson or negative-binoﬁia]

-

distribution. Of course, the Poisson distribution is not new to psycho;

— —— ©

metric theory (Lord and Novick, 1968, chapter 21), and it frequently gives \

good results when a particular event occurs infrequently. The negatfve—

binomial distribution is usually the first choice when the Poisson.ais—
’

tribution is believed to be inadequate (Johnson and Kotz, 1969, p. 125).

. The Gamma-Poisson Model 4 ‘ oo . %

P

Let w=n-x and 2=n-y be the number of incorrect responses given by
an examinee on the first and second test forms, respectively. We begin

by replacing (3) with the assumption that the probability function of w,

as well as z, is Poisson with parameter n. Symbolically

Y A" ..
— flw|n) = e ""/w! v (4) s
The reason for working with w and z, rather fhan ¥ and y is that the data
in our example is. skewed to the right. If the\gbgervéd‘frequencies had
. been skewed to the left, we would have used x and y. ’
He also assumeaﬁhat for the population of examinees, n has a gamma

distribution. The mofivation for ‘this assumption is that it is typically
)
. made for thé Poisson case, %kis mathematically convenient, and it has

-
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- - 6
. given good results with mental test data (Wilcoy, 1581). If f(w['n) and
v f(z|n) are assumed to be independent, results in Aitchison and Dunsmore
(i975) tell us immediately that .
et e
o) = sl (& (A " (s)

i.e., the marginal probability function of w is negative binomial. The

parameters & andys can_be estimaéed as follows: Let w and 52 be the
sanm]e,@ean,and variance of w for a random sample of examinees. Then o
§=(32/Q)-1 and o=w/# estimate B 5&6 o respectively. Three other esti- /
- mates 9f a and B-are also available (Johnson and Kotz, 1969).
Again referring to Aitchison and Dun;more.(1975), ve have that

- i . * 4 )
| . - ’ z oty
@ sl ©

f{

Since f(w,z)=f(w)f(z|w), we have an estimate of P once « and g are determined.

N

The Gamma Product-Ratio Poisson Model

The other model we consider also assumes (4), but n is assumed to have
. } ; h
AN

; a "gamma product-ratig" distribution (Sibuya, 1979). In this case .

Al

: _I'(\*f+ch)l‘(8+7)l‘(w+8)l’(a+¥l (7)
2 T(wrl)T (o) E(8)T{v)T(atBtytv) :

-

where v50 are unknown parameters. We note that two alternative names

for (7) are generalized Waring and negatige-binomiaT beta. Also, the

parameters a and B in (7) are different flem those in (6).

*




A « < BN o~sr i g s n
g Ty e
+ . , p n T e

2 ‘ 7
/ . e °
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' To estimate o, g and y, we first note that the first three factorial
moments are ) ‘ | ' : ~—
. wy = a8/ (y-1) ) . (8) -
wy = alatl)g(+1)/[{y-1)(y-2)] " . (9)
n3 = a(o+1) (a+2)8(8+1) (8+2)/ [ (v-1)(¥-2) (y-3)] (10)
. » ' - »
It follows that !
A & -~
u3 ' 21y . '
[;;-ullY-a“i%:—uT-ul*l' . o (11)
4 and -
. 143 3ug . \
Pl ' [u—z'r 1!1] Y/"' 20 - 28 = uz - 111 +4 | (12)
. " Thus, if ;’1 is the usual estimate of R (1'=1,2,3), we have an/esj:imate of. ‘

¥, say y. Substituting y and ﬁl and y, into equations (8) and (9) yields

- ~ A- ..1 - -
RRRTRCR L (13)

< ;} : ’ 'y .
. a*B 331 (¥-2)-5(§-1)-1 ‘\ (14)

Substituting the right-hand side of (13) for a‘in (14) yields a quadratic

'equation for g8. In terms. of the marginal density (7], eitherr\ estimate of
* B can.be used Since the other estimate of B will correspond to ¢, and-

since.(7) is symmetric in « and B. L R 'y

Finally, to estimate P with equation (1), we note that

- P(otw)r(atz)r(pty 4'-1’2(1
f(w,z) = r(a)g(a)%{é:&?rfi‘s‘l\)%l(‘é?:?ﬁ;(£a+g;+z+w) (15)

i -~
' .
: +

1
!
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) . ,
One way to establish fhi; restlt is to assumé f(Q[e) is negative-binomial
and that g(e) is beta (which is equivalent to assuming (7)) and then perform
the integration in (2). ' % . Tt

. o , ‘ N\~
3. NUMERICAL ILLUSTRATIONS

e

This section uses real déta to illustrate the practical advantqges of
estimafing P with the Eﬁo alternative estimates described above.,

First we considerlthe daJ:a reported in Keats (1964). As previous],}/
indicated, the beta-binomial model gives a poor. fit to the observed test

— —————

scores, but, as noted in Wilcox (1981), the gamma-Poisson modei7§$ves“a
reasonably good fit. _fhe test had n=30 items, and‘keats repé}ts observed
test scores for 1000 examinees. If we estimate P yith‘fhe betaiyfnomial'
model, -the results is .90. If we use.the gamma-Poisson ﬁodé], the estimate
is .81. The third estimate of P does not apply since the estimate of
the parameters in (15) are inaﬁmissib]é. Note that the reliability é;ti- _
mates used by Subkoviak (1976) as well as Marshall and Haertet-(1975) also
assume the binomial error mode} holds. Since the beta-binomial mode] gives
a poor fit to data, there {s some doubt about whether these estimates shéu]d‘
even be ‘considered. ’ |
As another illustration, suﬁpose'we have an‘n=15 itenr test with a
passing score of x0=10. Further suppese we hqve test scores as reported
in Table 1. These results are based on real data reporteg in, Irwin (1968)
but they do not represent tests scores. The‘point-is that we might gét -

/ N
observed frequencies that are skewed, as are the frequencies in Table 1,

in which case it might be better, or even necessary to.replace the beta-

binomial model with something else.
& : . .

-
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1
For the data in Table 1, the|est1mates of the paranoters in the beta-

b1nom1a1 model are negative, and so an estimate of P cannot be made Sup-

pose instead (7) holds. It follows that\a=5.2162, f=1.297 and Y=7:7967T\
Thus, éhe estimate of.P is .97. If instead we use the gamma-Poisson model;'

the estimate of P is -again .97. '

~

CONCLUDING REMARKS
The main point in the pape} is that the beta-binomial model might
give a substant1a]1y different estimate of re11ab1}1ty relative to some
othETfkmdel‘that gives a better fit to data**‘we“TTTustrated‘two poss1bTe o
solutions, but virtually any form for f(xje can be used to estimate ‘P |
‘ via equation (2) as long as an ésfimate_of gfe) Egn be obtained. \

s
. -
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, g ABSTRACT
’ - ’ ’ rs ' . ' ’ ’

When analyzing the distractors of ﬁﬁ1t1p1e;choice‘test {tems,
. itiis sometimes desired to dgtermine whiéhlof the distractors has a small
* probability of being chosen by a typical examinee. At presént this prob-
lem is handled in an infé;mal manner-. fﬁ part1cu1ar, us1ng an arb1trany
number ‘of exam1nees the_pnobab1]1ties associated with the d1stractors
are estimated and then” sonted according to‘hhethernipe estimated values
‘isre above or below a known constant Py In this paper a more formal frame-
work for solving this problem is described. 'Thé first portion of the paper
considérs the problem from the point of view of des1gn1ng an experiment.
‘The solution is based on a' procedure s1m11ar to an indifference zone for-
mulation of a rank1ng Fnd -election problem. A later section considers .
methods that might be'emplgyed in a retrospective study. Brief considera-
tio;iibaalso gi&en to how an analysis might proceed whefi.a test item has

~ *

- been altered in some way. . .

L

(I H

KEY WORDS: indifference zone; enpirical Bayes; ‘“’_——QK/ ,
S . R
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" it should be replaced or rewritteh‘ . E

[
L)
. . & - . " . .
!* ] Y ‘ .
2 t

: éonsider a mu]tip]erthoice‘test ite& having-k+1,a1ternatives from which

rd

. LI .
to choose. One of these;a]ternatives is designated as being correct and the
~

. remaining k alternatives are referred to ?s distractors, Henrysson (1971, pp.

136~137) suggests that 3 statistical ana]jsls of the distractors might be made
as follows: Adm1n1ster the item to & random sample of n examinees; if the ob-

served frequency corresponding to a part1c§1ar distractor is small, perhaps

i

°

Henrysson s procedure certa1n]y seemsflxke a reasonable one and in fact
it is often used A proposed d1stractor might appear to be sat1sfactory but
in rea11ty it ‘might be 1nfrequent1y cbosen by examipees who do not kngw the

correct response. It is on]y.natura] then to conduct an empirical investiga-

= v
-

tion to determine when this“occurs. 1Insofar as we want to discover whether

an examinee knows the'correct resoonse; rewriting or replacing the distractor
might be in order when the ddta suggests that it is seldom ohosén.“lThe idea,
is to ﬁodify the distractor in the nope of lowering the probability of”guessing
the correct response, It shouzd oe stressed, however, that if any or all dis-
tractors are infrequently chosen, this does.not necessarily mean that the dist
tractors should be replaced, .If, for example, all of the distractors are sel-
dom chosen, it may be that'most examinees know the answer in which case thee
item might be acceptable for certa1p types of achievement tests while for other
situations (e.g., Lord and Nov1ck 1968,.p.320) the item might“be discarded
altogether. The statistical techriiques described here are mere]& meant to
aiert a test constructor to the possigilitf of improving the distractors:

Let P; (i=1,.:.,k) be the orobability'that a randomly selected examinee
chooses the ith distractor %For conven1ence the (k+1)- th alternative is
assumed to be the correct opt1oo, Thus, Pk+1 is the probability of a correct
response by a randomly chosenfexam1nee;z/29n§1stent with Henrysson (197t}>

suppose that for eaéﬁ{distractor we wanf to determine whether P; is less/than

or greater than some known constant P If’pi<p0, the vHlue of P is said to be
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gmall and cons1derat1on is g1ven to rewriting or replacing the d1stractor If
. ] \P ;2Pg> no. a’ctwn is taken. A common value for P appears “to be' .1 a]though

'bther values are certa1n1y possible.

.
’ N . N . Y

Let x; be the number of examinees who chpose'the ith distractor. Since

- /n e;timates p;»> @ hatura]Qdecision rule (and the one that is used) is to
d%cide‘the p1<po.if xi/n<po; if xi/nzpo the reverse decision is made. A correct
s . . .

Lision for all k distractors is made if simultaneously X;/n<pg when_p1.<pO and
g ’ '

J/n>p when P;i2Pg (i=1;...,k}. The difficulty is that because of sampling fluc-

X
tuations, we might observe an X; that results in an 1ncorrect decision. For
example, we m1ght observe xi/n_p0 when in rea11ty P;<Pg- Accordingly, when-using
Hénrysson s procedure we need to consider the following types of questions. How
w,,»—~\§“ many examinees should we sample to be reasonably certain 6f making a correct de-

cision for all k d1stractors regardless of the actual values of the P s? This
. type‘bf quest1on occurs when designing a studyofa ppoposed item, i.e., prior
to eﬂﬁ]ect1ng any data In contrast, once 'data is available, one might
. . conduct a retrospectwe %u-dy and consider. tr';e“ probability of making a
¥ correct sort of the distractors for the “typical® item under consideration.
StilT apother type of problem that might be_conaidered is determining tpe
effect of rewriting or replacing a distractor. In the present context we ,
would want the new value of p\, say p » to be greater than Po- At a minimum,
we want p to be at 1east as largg as Pye Thus, the question m1ght arwse as
to how certa1n we can be that p is less than or greater aﬁ P; based on
ithe number of exam1nees that are sampled. If pi<pi, the Jiigina] vepgion
of the distractor should be used; if Pi2P;s the new version is described as
imprpving upon the old. The purpose of this paper is to provide an*approach'
to these problems. s
From a statistical point of view this paper is concerned with compar1ng

. .‘ multinomial ceTf probabﬂit1es to a standarft,and with ¢ompar1ng Binomial "’
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. distributions to a control. For related results on this type of problem the

reader is referred to Gibbons, Olkin and Sobel (1977,"Chaptek 10), Fhaner
* (1974), Huang (1975)’, Tong (1969) and Wilcox (1979a, 1979b).

2. Mathgﬁatical Statement of the Problem 9
. For a random sample of.n examinees (sampled from an infinite population
o; a finite population with rep]acementj let x = (Xl""’xk+1) be the ob-
served frequencies among the k+] alternatives. The random vector X has a

multinod®al distribution given by

- k]
ﬂy=n:ﬂ]&w4 ’

where zxi =p, and £p. =1, Let Pg be a known constant. The first goal is to
o 1 , ~ ’ v
determine for each p (i=1,...,k) whether P is above or below Ppe As previously

indicated, the dec1s1on P;>Py is made if x, /n_p0§ otherwise the reverse is
said to be true. Let g, 0<g<k be the number of P 's su%h that p, —PO and

for convenience (and without loss of generality), suppose that the p s (i=1,...,k)

s,

are ordered, i.e., pI*p;k,.._pk As already noted, in terms of the X;'s, a

-~

- correct decisiaon (CD) is made if s1ﬁh]taneous]y

(20) % /n<pys 121,000 ke : s :
and ’ : . ' ‘ y‘ ;*
(2.2),  x;/mpy, i=k=gt1,.0 ke ’

The problem is to find the smallest n, say Ng> SO that regardless of the actual

values'of the P; 's, the probability of a correct de
close fo one. More br1ef1y, we want to find the smallest n so that -
(2.3) P(CD) p*,

v . L] ‘ ) ~




where’2

-~

"Knggj.

|

Following Gibbohs et al. (1977), an indifference zone formulation of
the problem is used. Thus, the investigator is assumed to have chosen a con-
stant §* with the idea that if p0—6*<pi<p0+6*, there is negligible loss in

misclassifying the ith distractor. In fact, if the value of p; is in the open,

winterva] (po-a*, p0+6*), any decision for that distréctor is designated as

being correct and so a eorrect decision is made with probability one. Thus,
our only concern is with values of pi§p0~§*rand P;2Pgts™
5 Y LN
3. An Exact Solution

In this seEtien an exact solution to the problem of determining novis
described. ’;;hst we observe that the P(CD) is a function of the unknown p;'s
Thus, for a given n, it might be that the P(CD)ZP* for some values of the pi's
but not for others. To be certain that (2.3) holds for any vector Ef(p1,.:.,pk+])
we cons1der, as is typ1ca11y done, the worst poss1b1e case, name]y, the Ps
values, say Q_ (p?,...,pk+]), that minimizes the P(CD). It is shown below

that.g does not depend on n. Hence, by choosipg the smallest n so that P(CD|

E?EP)>P (2.3) is guaranteed regardless of the actual values of the P; Is.

To avoid certain teché1ca1 difficulties, it is assumed that k(p0 6*)<1 This
is not a serious restriction for the problem at hand s¥nce typically pog,Z,

L01<6%*<, ] a.nd k<4. {7
¢, ,
! O (

Our “immediate goa] is to show that'g is g1ven by P; "po-a =1,...,k-g)

and p?=p0+a* (i=k-g+1,...,k). First, however, some phel1m1nary results are

needed. Accordingly, we begin by demonstrating that for fixed g and n,

(3']) P(Xi/n<p0’ -;':],-o"‘f"g) V i N

is minimized when p1=p2=...=pt_g=p0—6*. Since by assumption (k-g) (po-é*)fj, ‘
the possibility of having b1=...=pk_g=p0~8* is ensured."

.
&

.
*
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. ' “Let s be the smallest 1nteger greater than or equal to Py and

- : k- T
a o letp, _z?+1'pj. Olkin and Sobel (1965) show that (3.1) is equal- to .
J=1 ' )
r(n+]) ]'p] ]-t]-pz ].-t]-'..-tk—g-} n- SO k g S ] k"g dt
= Lo I sl (1-t,) NN it 1
r g(s)l‘(n-so~l-1) b P k-g : ’
( i . k=g

where I is the usual gamma Ffunction, $o° =(k-g)s, t = z] t and tO 1°

- "—

-~

“"tk-g are dummy variables. Note that this quantity depends only
on.(p],...,pk_g). Examination of the Timits of this (k-g)-fold integfal
-~ reveals that among all vectors (pl"“’pk-g) for which pifpo'é*’ (3.1)

attains its minimum value when
= =p  =p &%
(3r2) pT'f:'_pk-g po
as was to be shown. *

. Next consider . _ .

(3.3) , P(xk-gﬂ 2 MPgseeesXy 2 npg).

From Olkin and Sobel (1965) we see that this probabﬂi%:y is equal to

”

- P p, * n-sgg s-1 g
(3.4) - r(n+1) IJ?ﬂnvk(L%) Tt Nt
. I"(s)r(n-gsﬂ) » 0 ) 4=1 0 i
" where now ty = ,%1 2 and again tys t],...,tg ?re durmy variables. From .
i= :

(3.4) it follows that for fixed g and n, among all possible values of

Py 2pgt §*(i=k-g+1,...,k), expression (3.3) is minimized when

- =n = * - .
pk-g_*_]—n on"'pk p0+6 .

(3.5)

The above results are now extended to show that for any n and any admissi-

ble g, ) ~




v

' ~
P(CD) f P(X<S"“’xk-g<s’xk-g+]35f“"xkfs)

' is minimized when

g 7 - — *
(3.6) . p]=’.’=pl[g=po-6* and pk_g+]-o-o"‘pk—po+6 .

" The ve¢tor p that satisfies the tyo conditions given by (3.6) is referred

‘to as the least favorable configuration of the‘pi's.

First note that . . -

»

(3.7{ P(CD) = zzP(x],...,xk_g) P(xk_g+],...,xk[x],...,xk_g)

where the first summation is over all vectors (g],...,xk_g} such Fhat

x{g2 s (i=1s...,k-g) and the second is over all vectors (xk-g+1"“’xk)
such that X5 2 (3=k-g+1,...,k). It can be verified using standard tech-
niques that

P(xk_g+],...,xklx],.,.,xk_g)

. is a multjromial distribution given by

p k-g+1

x -
N - - . —‘ k - - n-x _.oo“x
(n Xy=e e xk_g)! k-gt] "'Pk,(1'pl .o pk) 1 k

' : NeXq=...-X
xk_9+1....xk.(n-x}-...-xk)! (]-pl"f"'pk-g) 1 k

X - X - e ™
=~, (n-x]"..."xk_g): rk_k_gg'l.l“‘rkk(]-p]-'.’-pk)n x] Xk

xk’é_]!...xk!(n-xI»...-xk)f (l-p]—t..~pk_g

)H-X]-. . .-Xk

— B 4

where ri=pi/(}jpl""‘"pk-g)’

-

Thus, making tﬁe appropriate modification ip.(3.4)*or referring to Olkin -

and Sobel (1965) the second summation in (3.7) can be written as

. r(n-x]—...-xk_g+l) rNor nfx}-...-xk_g-sg k a1
g T IO.--IO (]"to) n tj
r_(s)r(n-x]-...—xk_g-gs+}) - _ j=k-g+1
, Cn X | ‘ 1
’ K g |
S jekegtt  d h
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. ;wh re t.= ‘z% t d i t ¢ t r;e du ariables
whe 1:()--‘;5?!(_}_9H 3 and again tO’ kg1 ? e B a mmy v .

" Examination of the 1imits of this g-fo]% integral reveals tha;t for fixed
x],...,xk__g, p],...,pk_g, the second summation in (3.7) is minimized when
Y pk_g+]="'=pk=p0+6*' This in turn implies that‘ for fixed p],...,p!(_gl tﬁe
P(CD) as given by (3.7) is minimized when.(3.5) holds.
Next, set pk_g+]=...=pk=p0+6*. Since by assumption it is possible
,/to have p]="'=pk-g=po'6*’ it follows, using an argument similar to the
one in the preceding paragraph, that the P(CD) is mim‘mized' when (3.6)
holds. Hence, by choosing o to be the smallest i.rjxteger‘such that 1;he
P(CD) > P* fop all adfmissib]e values of g under thé least favordble con-
.figur:ation (3.6 ,%guaran’tee (2.3) no matter what the values of the p].‘s
happen to be. ) A ¢ ‘

. Exact 'and Approximate Methods for Calculating ng-
Tables 1-3 give the value of ng.for pg=.1, §*=,05; Py=-155.2,

5*=.\05, 3 P*=.77, .9, .95, .99; and k=1(1).3. If, for example,

k=2, p0=.1, 6*=.0/5 and P*=.,9, n=110-examinees guarléntees that the correct

sort of the two distractors will be made with probability at least .9

regardless of the actual Ps values. Thig section describes exact and

. , )
A Lower Bound to Ny . (
g ' . 7

“There might be occasions where it is helpful to have a lower bound

approximate methods for determining n

to g that is easily computed. Accordingly, let I{k,p,s,n) represent
the value of (3.4) when Pys.-- 5Py have a common vatue p. This is

#

. also the P(CD) for the least favorable configuration when g=k. It can be

7
1

7
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seerr that the sma]]esé'n, say n, such that I(k,p,s,n])z P* is a Tower bound °

to ng whenever p‘z'do + §*. Sobel, Uppuluri and Frankowski (1977) have

tabled the vq]ueé.éf 1(k,p,v,n) for p=t'], tikf1(1)10, and v=1(1)10 which

can- be used to determine a Tower bound to ny by referring to_the entries

for the smallest p > Po + & and the largest v < s. For example, if k=2,
= .15 in their Table

pg=-1> 6¥=.05, P*=.9, then the smallest p > py + &*
B is p = 1/6. Examination of the entries in their table reveals that with
o > 68.

n=68'ﬂwhich imp]ies‘that s=7)1(2, 1/6, 7, 68) = .9008 and so'n
Thus, for this particular case, ng can be detérmined exactly by starting
" with n=68, evaluating the P(CD) for g=0, 1, 2 and checking whether P(CD)>,

P* for all three values of g. If P(CDXP* for any g, -the value of n is

i,

increased by one and ‘the process repeated until (2.3) is attained for all”

three values of g.
for the Case k=1

Method of Calculating n

This situation has already been considered by Fhanér (1974) and Wilcox
(1979). In particular, "o is the smallest integer n so that simu]taheous]y

0
We first discuss the determination of o for the special case k=1.

2

>

(3.8) 2 (M) (p#e*)X (1-pye6*)"%op*
and

S=1] -
XEO(Q) (po'd*)x (1 "p0+6*)n XZP*'

even for n > 500. They can also be calculated via the re]ationship

n -
I(1,p,s,n) = ng(;)pxﬂ-p)n X

These two quantities are fairly inexpensive to evaluate on a computer,

Frol
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“whe?e I(1,p,s,n) is the usual incomplete beta function. It has also been - \

" shown that an apprg;nmate value of no is given by A po(l po)/(s ) where A

is the"P* quant11e of the standard norma] distribution, . h
Qe
The Case k=2

For k=2 there are three va]ﬂés of g that need to be cons1dered For
\
g=2, the minimum P(CD) is given by I(2,p s n) with p= p0+6 From Sobel

et al., (1977, p.8)

-

n - - sy=S
1(2,p,5,m) = 2 (M’ (-2 '3 (9)1]. ~
y=2s ¥’ z=s ¢

(It might appear that the term p¥(1-2p)n-y should be either (2p)Y(1-2p)""Y \

or py(1~p)n"y, but from Sobel et. al it can be seen that this expression

is correct.) For g=0, thg minimum P(CD) is given by
, k
(3.9)  J(k,p,ssn) = % (~1>¥(")r(y,ps n)
¥=0

with p=p,-s §* where 1(0,p,s h)=l. In fact, from Sobel ‘and Uppulur1 (1974)
follows that for g=0, the m1n1mum P(CD) is given by (3. 9) for any k For

g=1, the minimum P(CD) i

g-I(n ) (py=s" " +s*)n—xl/l(1 (p+6*)/(1~p+6* .
x]:O X] pO ) (]—po - > po /( ”po é )’S’n‘X]). o
£ .

~The last expression is obta1ned by writing the P(CD) as is done in (3.7).

4

An Approximate Solution for k > 1. \

For k > 2, the necessary calculations to compute g become prohibitive]y
expensive, In many cases, however, exact resu]ts are possible by first -
app1y1ng the .approximate so]ut1on about to be descr1bed and then perform1ng
the calculations outlined below.

The proposed approximate solution is based pn the Bonferroni inequality

L]
o

s - 216
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. o
which states that for any set of events B],...,Bm,

(3.10)  P(n B,) > 1 -z P(B?)

~

where B is the comp]ement of the event B Several othed approximate
solut1ons were 1nvest1gated that re11ed on the centra] Timit theorem

and various inequalities for the multivariate normal d1str1bup1on.'However,
the procedure proposed here is relatively easy to.use, it is fhexbensive,
- .

Familiarity with the multinomial distribution suggests that when p0

and it is surprisingly accurate.

is close to zero as is typically the case‘for the problem under investiga-

_tion, the P(CD) is a minimum when g=k. ‘Conditions under which this is true

are not known. In all cases considered, however, it was verified that this
N . i )
is jndeed the case. Fortunately it is possible to arrive at this conclu-
s

sion for the special cases considered here without calculating the exact
value of the P(CD) for every g. This point is iRlustrated be?ow.

Let ny be the smallest integer such that (3. 8) is greater than or

-equal to T* where T =1—(1-P*)/k We consider ny as a first approximation

to ng: As altuded to ear11er our'main mot1vat1on for us1ng Ny to approxi-
mate L is the high cost of determlng o exactly for k>3. Before
considering this case, it is of interest to examine the accuraqy'of the
approximation for k=2." v
‘Table 4 gives the value of nq for k=2 and the values of P* and o*

used in Table 2: As can be seen, ny gives a good approximation to Nge

The Case k=3

.

The first step used to determine n, exactly for the case k=3 was to

‘compute Ny in the manner described in the previous section. The results

’ ' ks

10 ’ \
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are reported in Table 5. Next, using the.valpe of N the value of I(3,p0+6*,

|
s,n]) was calculated. This was accomplished‘wfth the’ reduction formula«

.
-

. n=s y n-y N ‘p) s
(3.11) I{k,p sS,N) = _ E( c1)s y)(l p) ‘ Ifk P/(l‘g)fS,Y)

) A

" . .
~ . . /
- given by Sobel et al. (1977, p.8). .The value of ny was then adjusted to

find the smallest value of nys Say ny, so that I(k,p0+6*,s,n2)§1 P*. A com- \
parison of Table 5 with Tabl'e 3 shows that frequently ng=ny and that typically 4
the value of h] 1s within one of the value nge . >
Finally, to verify that n2 is sufficiently {arge to satisfy'(2.3),
i.e., that ng=ny» We calculated I( \b +§%,5,n ) for i= 1 ,2 and’ J(],p0~6 ,s,nz)
for i= 1 22 3 As previously pointed out J(1,p0-6 ,s "2) is the probability
of correcily classifying the i d1stractors having probab111ty p= po—s of |
being chosen by a randomly selected e(gT}gee. These values were then used
in conJunct1on with the Bonferrani inequality. to show that P(CD) > p*, /
As an illustration, sonsider the case k=3, p0=.1, 8*=,05 and P*=,95,
The value of‘n] was found to be 199 and it was verified vi; (3.1})lthat
n=199 1is -the smallest sample size so thai P(CD)>P* when g=k (all distrac-

i
than the/standard po) Consider, for example, the case g=1. If was found

tors have a probab111ty of being chosen by a typical ex?TlBge that is greater
that I(],p0+6 +55199)=,996,.and that J(2, Pg~3 *,5,199)=.995. As explained -
*earlier, the first quantity is the probability of mak;ng a correct decision

for a distractor havin p=p0+6* and the second quantity is the probability

of a cofrect decision for {wo distract9rs having p=p0-6*. Applying (3.10)

it follows that the Jjoint probapility ofhgqrrectTy c1§s§ifying all three

distractors is greater than or equal to 1~(1-.996)-(VC.995)=.991.‘ Thus, the

n : o

218 g
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the desired probab111ty guarantee is satisfied for this spec1a] case. Pro-

ceed1ng 1n a similar manner,\1t can be seen that n~199 is sufficiently large

L}
+ for g=2 as well.

The Cate k=4 B ‘ o .

The last eituation considered is k=4, In this case the va]ue of Ny
was approximated in the manner prev’ipus]y described, but no attempt was made
- to make an exact eva]uatlonw of the P(CD) under the least favoﬁrab]e configura-~
ti;on.' However, ch'ét:\lis were ma’de on the adequacy of Ny with a normat approxi-

A

mation to I(k,p,s,n) given by ) ’ o

*

- s 2 ) . *
(3.12) Ay looh) =¥ (5o (s 2+ & (522 (a8 2 (n)-6(5)%(n)

. . | 4»“-'3(h)+6(§)¢4(h)«»"'4(h)};

whers p='-s(n-s:+] )'] and h=2 (arc-sin pl5 » arc sin [s/{n+])]%)(n+2)%, % is the-

o

\_stg_pdar‘d pormal cumu]ative distriubtion function and ¢ is the standard normal

" density function. This approximation. was proposed by Sobel et al. (197, section
~ ' 2.4) who claim that it generally gives better results than the nbrma] approxi-
' t " mation -to the discrete mul t1npm1a] d1str1but1on. '

Table 6 gives the resu]t‘xng values of n, for k"4. Using (3. 12) in ©
0

* -
L

conjunction w1th the Bonferroni 1nequa'hty, an approximate ]ower' bound to %

theeCD) was a]so determined for each ﬂo. These values are reported
oo . ‘_',. — “ . .
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In thé¢ section we describe how a retrospective study might ‘be conducted

4. A Lower Bound to the P(CD) for a Typical Item.

to estimate a Tower bound to the P(CD) for a typica]‘item under study.

. Before do1ng so, we note that once observations .are available 1t_1s also

*

“ of interest to obtain a po1nt estimate of the P(CD) for a typlcgl item and
' that under certain c1rcumstances a theoretg;al so]ut1on to this problem
exists. For example, we might assume that PyseeesPy, arise from a Dirichlet

o

distribution the parameters of which can be esﬁ1mated in the manner described

by Mosimann (1962). However, there remains the ;factfee¥M8ffficu1ty of

evaluating the P(CD) once an expression for it has been obtained. For this

reason we do not discuss this problem further.

Although “there are difficulties with obtalnfng a point estimate of

‘ -

. " the P(CD) for a typ1ca1 test item, it is fairly easy to obtam a TOwer bound

to this’ quant1ty by proceeding 1in the manner about to be described. *It_

fs assumed that observations are ava11ab1e on N items under 1nvest1gat1on.

" Consider the first d1stractoﬁ\of every item hav1ng probability p13(3 =1yeee,N)

. of being chosen by a typical .examinee. Let h}(p) be the marginal d1str1but1on )

ef plj' No assumption is made about the.form,of h; it is merely assumed

that the first two moments of h exist. Assumihg the conditional distributidﬁ

of xij is b1nom1a1 for a given paj, we can estimate the Tean ‘and var1ance

of p1J over the domatn of items,- say p and 02, with .

L]

— [ . r ' . A
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where N 2 o
[Nn(n-!)] L E(XIJ x];Y
(Lord and Novick, 1968, p. 521).- . e

. 2
- Henceforth we assume p and-o~ are known. Let

E = po’ 'if u < po
=p,ifp0r<_pi] I
and - oo T - T
2 . 2
U= -?——g———i, ifO<o <m
c +(§-u) |
2 . )
= (u(1-u)-o )/(1-p0)p0, otherwise - !

where

m = max{ulpg=n)s (u=py)(1-u). =

Let Bi‘be the probability of a false-negative decision for the first
distractor of a randomly chosen item, i.e., By=P(x; <S,P12Pg)-

Using results given by Skibinsky (1977), Wilcox (1979C) shows that

.' < U E ( )po (1- Po)n-x

~
2

.~ The details of the argument are given by Wilcox and so they need not be’

repeated here., Let a]=P(X]3$], plgpo). It can also be shown that'
< -

a1 2 U] 2 ( ) Po (]‘Po)n_x-

&




N
£y =W ifwap,

Using the
&i

where Uy is the value of Urwith £ replaced witli™

P> 1F Pg <p<l

and B,, for i=1,...,k. FErom the Bonr’
P(co)gl-g(&]-;é )
i

gbove’ procedure, we obtain an upper bound to-c. and 8., say
L7

-

determined for a given §™>0

5

\
rroni inequality it follows that
It is also of interest to note that a lower bound to the P(CD) can be

.
-
o
s
'

The interested reader is referred to Wilcox (1979C)
Comparing Two Binomial Probability Functions
As—pointed out. in the introduction to this paper, there may be s1tuat1ons
where an investidator is 1nterested in ascertaining theseffect of a part1cular
modification to a mu1t1p1e-ch01ce test item under study.
probability functJon to a .control,

st

-t

It was further sug-
gested that this prob]em might be formulated in terms of comparing a binomijal

funct1ons having probability of 3uccess p“and p and the goal is to determine

That is, there are two binomial probability
whether p’ < P A §glut1on to th1s problem 1s given by Wilcox (1979b)
we extend this solution to cases where we’ want to determine whether p*
appropriate for the situation at hand

-

Here

+
p-

¢ where ¢ is a constant spec1f1ed in advance by the 1nvest1gator as being

whethér the difference between p’and p is reasonably large.

In other words we want to determine




- Let x and y be the observed number of successes corresponding to the
popu]at1ons having probability of success p° and-p, respect1ve1y. The deci-

=1

sion p”<p+c is made if n ]x<n y+c; otherwise the reverse is sa1d to be

true, }

/ As before, an indi%ference zdhe formuTation of the problem is used,
In this case the indifference zone consists of the open interval.(p+c-6*,
prcs™),  If prc-s*<p<prc+s™ the investigator is Hot particularly concerned
about which decision is made. If p’<p+c~6* or if p~ >ptc+ e want
the probability of a.correct decision to be reasonab]y high,

Since the family of binomial probability functions has the monotone
Tikglihood ratio property, it can'be seen that for fixed p, the minimum
P(CD)"is

y-1+[nc

n 1 o 3 %\ X *\N=X /Ny Y n-y
(5.1) 4o xko () (pre=07)7 (1-p~ets™) (D)p” (1-p)

or
-~

E (5.2) g n tnc] (x)(p+c+6*)x (1-p-c-6*)""% (;)py (1-p)"Y,

whichever is smaller, whgre [nc]_rgpresegts the 1ar§est integer less than
or equal to nc. Thus, to guarantee that Both (6.1) and (6.2) ha&e a value
exceeding P*, it is sufficient to minimize these quantities as a function
of p and see whether the desired condition holds for a given n. If, after
minimization, either (6.1) or (6.2) is ]ess.than P*, a ‘larger value of n
must be used. Table 8 gives the smallest re&uired sample sizes for P*=,75,

.9, .95, .99; s*=,1 and c=0, .05, .1, .15.




’_ e e -Concluding Remarks

The main result in this paper is that a researcher can solve the follow-
ing type of problem. Suppose we have a multiple choice test item with k=4
distractors. Further supggse we want to determine which distractors have

a probability of less than .1 of being chosen by a typical examinee, and

simul taneously determine which haye a probability of at Jeast .1. A deci-
s{on about each distractor is Tiade based on a random sample of examinees.
If the p;oportIOn of exam1nees choosing a d1stractor is less than .1, we
decide the corresponding cell probability is less than .1; otherwise the
reverse decision is made. Ehat is the minimum.number of examinees required
S0 that regardless of the aéfua] cell probabilities, a correct sort of the

distractors is made with probability at least .975 when an indifference zone ;

. of 6*=.05 is used? From Table 7, the answer is n=269. If instead there are{
‘ LY

1

. k=2 distractors, Table 2 says that at ]east}n5235 examinees would be needed.
While the original motivation for this paper was to ana]x;é distractors, . _
an additional application of thé results reported here recently came to the
- author's attention: Macready and Dayton (1977) illustrate how latent struc-
ture models m1ght be used to reasure achievement. For the simplest casé, ‘
we have fﬁ;’equ1va1ent items for measuring a particular skill. Two items ’ :
are defined to be equivalent if every examinee knows the answer to both or -
neither one. Let g be“the proportion of examinees who have acquired the skill,
and Tet g;=P(correct on the ith item l examinee does not know), i=1,2. Fob

a randomly se]ected examinee, the probability of a correct on S{gfﬁirst item

and an 1ncorrect on the second 1s '

tplo 51(1 32)(1"5)




)

L

and the probability of incorrect and then a %orrecggis S -

p01 = (1“31)32(1“C)-‘\ *

If we assume B1=By <%, E?en P1o¥%> and Pg1¥s- Since pPygand Pop are cell
probabilities of a multinomial distribution, a partial check on the model
can be made by estimatiné P10 and Po1 in the usual manner, and seeing

whether the values are both less than k. Determining the number of exam-

inees required can be accomplished with the rsiu]ts given in this paper,
‘ . ]
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TABLE 1

Values of Ny for k=1

Py - P*: .75, .9 .95 .975 . .99
d .05 18 60 110 160 239 ’
15 .05 25 8 153 219 313
a5 .10 5 - 20 40 59 86
2 .05 33 100 180 260 - 370 '
2 .10 9 2 45 70 100
-
;
TABLE 2 .
Values of o for k=2 ‘
) %
pg & ~ P .75 .90 .95 975 .99
10 .05 99 1J0 160" 235 290 T
a5 .05 66 153 219 292 380
a5 .10 19 40 59 ‘797 106
.20 .05 84 180 260 © 340 455
.20 24 45 70- 90 120

.10 .




i r
TABLE 3
Values of n0 for k=3
N

P &* P*: 75 .9 .95  .995 .99
4 d .05 70 140 199 250* 320"
a5 .05 100 192 259 333*  420%

| 15 .10 26 52 72 92 119
.2 .05 20 225 305 390*  a495*

.2 .10 30 60 80 105 135

L

calculations of the P(CD).

L g

TABLE 4

Value of ni‘for k=2

Entries marked with an * were not verified using exact

Py s 1P .75 9 .95 975 .99
d .05 49 110 160 235 290
15 .05 66 153 219 292 380
a5 .10 19 40 59 79 106
2 .05 89 180 260 345 460 "
02 .10 4 45 90 120

70
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TABLE 5

Values of " for k=3

* *

.75 .9 .95 .975 .99

pO s . P

R .05 79 140 199 250 320

15 .05 100 193 260 333 420

5 .10 26 52 72 93 119

.2 .05 120 225 305 *hkk o kkk

.2 .10 30 60 80 105 135
TABLE 6

Approximate Values of ny for k=4

P s | p*. .75 9 .95  .975 .99

a0 .05 99 160 219 270 349

5 .05 132 219 292 360 446

15 .10 33 59 79 9 126

.20 .05 155 260 385 425 525

.20 .10 39 64 85 105 135
C S

- 230
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TABLE 7

)

VaTlues of ﬁo

for k=4 Using (3.12)

Po P*: .75 .9 .95 .975 .99
R .05 99 160 219 269 348
15 .05 132 219 292 359 453
15 .10 3 Yo 79 99 125
20 .05 155_ 250 345 425 - 540
T
TABLE 8
Values of n for comparing a binomial
distribution to a control, §*=.}
c  |P*: .75 .9 .95 - .99
0 32 91 144 245
.05 Y 101 161 © 261
.10 41 101 151 261
.15 34 94 141 254

P N
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. T _MBSTRACT:- == .

: .. /\ (. T L e )
Answer-untﬂ-correct (AUC) tests have been with us for some'tiy _
Pressey (1950) poqnts j:o the1r advantages in enhanc1ng learning, and’ Brown

(1965) has proposed a scor1ng procedure for iﬁi tl;lat appears to increase. ) =

.

rehabﬂn:y (Gﬂman and Ferry, 1972; Hanna, 1975) Th1s paper describes .
a new scor1ng procedure for AUC tests that so]ves Var1oys meas‘:xrement
prob]ems. _Inzparticular, it makes it possible to check whether guessing
is at randor'n, it gives aeméasure of how "far away" guessing is from being
random, it eorrects observeg test scores fon partial information, and it ' .
' _;/ie‘l ds-a measure of how well an item reveals whether an examinee knows e
lor: does not know fhe correct’ ?-espbnse., In addition, the paper derives -
the o]atimal 11‘near estimate kunder squared e.r"rornloss) of true score that
is corrected for par‘hal 1nfo1~mat10n, and it derives another fc‘a S
score underﬁc‘he’ assumption the D1r1ch1et-mult‘§r:al model ho]ds Once
certam parameters are estimated, the latter formula score makes_ it posé
31b1e to correct for _partial mformatwn using only the ‘éxamineés usual
. number correct obsetved score. Thi 1mportance of "th1s formula score is .
. ‘,dwscussed'at the end of the paper. FxnaH,y, various statistical techmques
are descrabed that can be used to cl)eck the assumptions. under'lymg the,;

s proposed scormg procedure, ) . . . ' "

-

]

-
,:l")‘
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v ‘ INTRODUCT ION

When an exdminee responds to a mu]tfp]e-choite test item, there is
the problem that an examinde's response might not reflecf his/her true

state. The most obvious example, an) the one of central concern here, is

that an examinee Right guess the correct response without knowing what

it really is. The common “solution to this problem is to assume guessing

\

-

is at random. That is, if there are t alternatives from which to choose,

“and only one is correct, ﬁhe probability of a correct response when the

-1 Simuftaneously, however, it is recognized i

-

that to assume rahdom guessing is indefensible. One possibility is that
an examfhee'might be able to eliminate one or more distractors without

knOW1ng the correct response. In support of this poss1b111ty are empir- -

ical 1nvestigat10ns on fbrmula scoring where it was fbund that the proba- - -

&fnlity of guessing is substantially h1gﬁer than would be expected when .

random guessing occurs‘(Bliss, 1980; Cross and Frary, 1977). We might

assume guessing is at random anyway,.but this can;i;ue\sezibbs-fbhsequences . .

in terms of test accuracy (e.d., Neitzman, 1970; cox, 1980)

The purpose of this paper is to examine howqan answer-unt11-correbt
(AUC) testing procedure might be used tb\takq into account the effects
of guessing. One advantege of the proposed scoring procedurg is that its
efficacy can be empirically checked in several d1fferent ways. - The model
contains' number—r1ght’scor1 9, as we]l as the assumpt1on of’random guessing,
as a special cdse. Thus, when observed test scores suggest,that the model |
holds, the apprgpriateness of the two more common scoring procedures can‘

be check%%é as is 111ustrated in a later section of the paper. On a related

matter, the mode] can be used t ’g,teét whether items are "ideal" in the .
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. sense defined by Weitzman (1970). This just means that a random guessing

assumption can be tested. Using the entropy function, it is also possible

to measure how "close" the probability of guessing is to t"l. This is

important because when the probability is not.close to t'l, this suggests
it m{ght be possible to improve the distractors which in turn will improve
'te§t accuracy. The exact sefrse in which this is true is explained below.,
Another adventage of the model ts that'it yields a measure of té§t‘accuracy
that is not ordinarily av@1able. . Two new formula scores are also derived,
the advantages and disadvantages of which are discussed below.
It should be noted that a scoring rule}%ij an AUC test has been pro- .
posed by Brown (1965). The scoring rule has Seen empiriea]]y investigated
by Gilman and Ferry (1972) and Hanna (1975) who found it to be more ré§
liable‘than number correct scoring. Moreover, an AUC testing procedure - .
. has been advocated from the standppint of enhancing learning (Presse_y, -
,r 1950). The goal in this paper is to propose a different scor1ng rule that ’

corrects for partial information.

" . *

»

It is assumed that when an examinee responds to an achievement test

ASSUMPTIONS «

item, he/she can be described as either knowing o not knowing the cor-
- rept response. In the terminology of Reulecke (1977) this means that the
. "model inclydes a binary structure variab]e,‘dr following Harris anq Pearliman
(1978) examinees are descniteg#jn terms of a dichotomized latent trait.
/ One more possibility is to.say that an examinee either has or has not

acquired the "psychological structure" of a task (Spada, 1977). This ‘ ‘

" means that the model is deterministic in thegaense that if an examinee's

M 1]
‘ . ) A \- oL -
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latent state is known, and if there are no errors at the item Tevel, it

would be known whether an examinee would.produce a correct response.

.however, the mode1 inclhdes what Reulecke .(1977) calls an intensity variable.

In part1cu1ar, it 1s assumed that an examinee who does not know m1ght give
a correct response. The probability of this event is unknown, but it can

be estimated with the scoring formula and probability model described

below. .

Following Horst (1933), it is assumed that when an examinee does not

know, he/she can eliminate -at most t-2 ;i!tractors from consideration.

Once these distractors are eliminated, the examinee chooses .an answer at
. : , \

random from among those that remaim. An examinee who knows, always gives

L]

the correct response. . « he
. B . » %
b ‘z .‘r - - -
Finally, an answer-until-correct scoring provedure is assumed. This
1Y kS
Ty o .
means that an exam1nee responds to a _1tem until the correct alterna-
- e %

tive is chosen. . .

(’f.’

THREE' TYPES OF GUESSING

Before turnwng to the ney results, 1t 1s 1mportant to be more precise
about what is meant by guessmgs -Three types can be deschbed The first
app11es to a situation where randomly sampled examinees ‘respond to the |
same multiple-chétte item. In t;is cate we qefine guessing as the proba-
bility of a cor;ect respgnie given that the raqdbmly sampled examinee does

not know. The seconﬁ, or fype I1 guessing, is. defined in terms of a

s1ng]e examinee respond1ng te an 1tem randomly sampled from some item doma1n.

L 4

The rate of guessang for~the examwnee is the probab111ty of a correct

-

reSponseﬂto a randomly Sampleq item that he/she doés not know. Finally,

¥

,




- ' | Solving Measurement Probléms
A-5 . é

*

. N

. there is Type III guessmg which is the probability of a corpect response.
' over independent repeated trials where a single examinee H/:Z:nds to a
specific item he/she does not know. Wilcox (1977a) examines Some late

. structure models that are relevant to this case, but there are soﬁe pkag- .

" tical difficulties (Wilcox, 1979) which limit gheir use. Only Type 1

¢ - . N

and Type Il guessing are considered. - oo el

2

A MODEL FOR AUC TESTS AND TYPE I GUESSING
Consider a randomly s;ﬁbled examineé responding to a specifi; test
item using an AUC test. For convenience, particular afténtioh is given
to the case where the multip]e-choice test item has t=4 alternatives from

which to choose, one of which is correct. The results are readily ex-
i
N tended to any value of t. Based on the above assumptions, the examrinee

. beldngs to one of t=4 mutually exc]ysive groups. In particular, the exam-

inee knows the correct response, or can eliminate 0, 1, or 2 distractors.

Zeta 3.c. Let & be the proportion of examinees who know, and Tet C be the propor-

i

tion of examinees who can eliminate i distractors. The probab111ty of a

correct response the first time a randomly selected examinee chooses an

I

~—— alternative is

~y

o Insert Equation 1 here e

h ]

Lt

The probability of an incorrect on the first choice and a correct on the
) sqund is

- Insert Equation 2 here

. i\ . 237 . S,
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' . The probability of two misses and then a correct is

&
Insert Equation 3 here -

o

o

e . and the proﬁabi\ipy of three incorrects is «° ,

L 4

-

v

Insert Equation 4 here -

w~

More generally, o .

s ‘ - Insert Equation 5 here
. . . - _ - %

»
[ r—
.

where i=2,..., t.
. : For,a random sample of N examinees let X; be the number who corre-
spond to the event associated with Pi- For example, X1 is the number of

examinees who are correct on the first alternati¥e chosen, and Xo is the

s o
-

» number of qxéminﬁfgsgho are incorrect and then correct. The X;'s have

a multinomial probability function given by

Insert;EQuation 6 here °

-
’ .

where

* L

. Insert Equation 7 here

LY
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Since z=p;~Pp>

‘Insert Equation 8 here -

L

-
.

-

is an uﬁbiased estimate o# t. From Zehna (1966) it also follows that f is
an unrestricted maximum 1ikelihood estimator. Proceeding inﬁa similar ‘
manner also yields unbiased, unrestricted, maximum Tikelihood estimates of
the ;i:s, namely, ‘

-

Insert Equation 9 here -
‘ Insert Equation 10 here

Insert Equation 11 here

-

Nofe the model assumes that
'U‘ /‘ »

~"Insert Equation 12 here

4

_Maximum Tikelihood estimates of the z's are available under this restriction
of the pi's as noted by Barlow et al. (1972). For example, the maximum '
likelihood estimate of z, assuming equation 12 holds, is given by'

equation 8 when x;>%,, and it is z=0 otherwise. , A

e

Wy
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Using the Model to Analyze Achijevement Test Items

Macready and Dayton (1977) describe a probability model based on -
Type 1 guessing that might be used to analyze mastery tests consisting
of equivalent items. This sgction illustrates how the above model can
be used to analyze achievement- test items in a similar but qffferent
fashion. : '

Suppose, as is customary, it is decided that an examinee knows th?
correct response if the first alternative chosen is the cérrect answer,
ang that otherwise the examinee does not know. .I: fhis case a test
constructor woild Tike to know the accuracy of the dec{sion about a
t}picalgexaminee Qased on his/her response.

Thé cells in Table 1 give the probability of the four possible

outcomes when an examinee responds to an item.

Y

Insert Table 1 here

Thus for a rando&]y sampled examinee, the probabijlity of a correct decision

about an examinee's latent state is the proportion of agreement in Table 1,

namely,

Insert Equation 13 here .
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- . -

An unrestricted maximum 1ikelihood estimate of P is just

e - o -

Insert Equation 14 here
where z, 20, 21' and 22 are given by equations 8-11. For any't,

Insert Equation\ls here.
I —

~ EJ
P can\also be estimat;ed assuming equationtl2 holds, as is #1lustrated
below. In many instances this will yield the same éstimate of P as is
N‘iven by equation 14, but this is not always the case. -
: Using equation 13,it would seem that for any fixed z,the accuracy
of an {tem is maximized when guessing is at random, i.e., when ;1=;2=0

. " and ;0=1-';. This can be established in a more formal manney as follows:
The inequality

Insert Equation 16 here

holds wﬁéﬁever Xj<Xp<e - Xy if and only if

A3

. A Insert Equation 17 here\

Sigma, cap and £c;=Ib, (e.g., Marshall and Olkin, 1979, p. 445). It follows that
P is maximized when £1%p=0 since equation 17 holds when c=(t, Zg» 81> cz)
and b=(z, 1-;, 0, 0).

Another way to characterize Table 1 is to use the "del" measure

developed b}( Hildebrand et al. (1977) which, for the s1tuat1on at hand,

P bl
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is equivalent to Cohen's kappa (Cohen, 1960). In terms of the t's, this
measure of association is

*

, [Insert Equation 18 here - } .

where

,r":‘

Insert Equation 19 herec
A

-

Following Hildebrand et al., k can be interpreted as follows: Suppose it
is desired to measure the extent to which an examinee's latent state can
be "predicted" dtcording to the decision rule being used. The off-diagonal
cells in Table 1 represent the error rates. Thé index x represents the
proportional reduction in the number of cases {; the pair of error cells
when a shift is'made from statistical independence with fLe pgpu]ation
marginals to the actual probability structure.

Note that Equation 18 is the value of x assuming the model holds.

A Measure of Item "Idealness"

Neitgman (1979) describes ‘an asymptotic tegt of whether an item-is
ideal. As previoGs]y indicated, an item is defined to be ideal if guessing
is at random. In the above notation, this corrésponds to havjng £17%,=0
which implies that P2=P3=Py- A practical prob]ém is that the null hypo-
thesis that Po=P3=Py might be tested and rejectéd, when in fact Pps Pg
and P4 are nearly the s:ze in value. This in turn might lead to efforts

in imp?oving the distragtors when the item is already close to being ideal.

J -~

3
242
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\ L]
The simplest approach to this problem is to estimate & and Z, and
see how close they are to zero. If they are noﬁi simply examine the dis-

tractors and decide whether any of them can be improved. ' Some additional

possibilities are described and illustrated below. ' %

When trying to_detgrmine whether 5 and ¢, are both close to zero,
it might be desira%}i;to take into account their combined effect on how ‘
close the item is to being ideal. Looking at 4] and gp separately, they
might appear to be close to zero,.but together, perhaps the item could X
be improved by a substantial amount. The problem becomes more.complex
when more than three -distractors are used. Thué, it would be convenient
to have some measure of how well an item approximates the ideal situation
where ;0=1-;. . ..

One approach is to estimate ¢ which yields an estimate of the pro-
portion of agreement in Table 1 for“the case zy=1-z. fhus, we have
estimated the maximum possible value o% P for fixed ¢, say Pmax’ which
corr;Sponds to the estimated value of z. For t=4, Prax” é%-+ %-. Next,

estimate P which yields an estimate of

\ -
. Insert Equation 20 here
A i -
This gives a measure of how.ideal the item really is. Wkhen the model
holds, A>0, and the closer A is to zero,.the better the item.
Employing khe A measure seems to be intuitively appealing, and in s

some sitqatfons it might suffice., However, there are at least two ob-

Jections to its use. First, it has besp suggested (e.g., Marshall and

.. 243 o
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Olkin, 1979, p. 408) that measures of inequality should have certain proper-
ties, namely, they shoyld be Schur-convex, or strictly Schur-convex. Here
the goal is to measure the inequality of Pas P3s Pg- (The meaning of a

Schur-convex function is not given since it does not play a direct role in .

the results to follow. The interested reaaErﬁis referred to Marshall

and 01kin, Chapter 3.) This requirement was first formulated by Dalton
(1920), and steps,in this direction were taken by Lofépi (1905) and Pigou
(1912). Thus, as a measure of the inequaﬁity of pz; P3 and Pgo 8 might

be objectiona§1e because it is not Schur-Convex. To see this, it is
sufficient to observe that 4, as a function of Pys P3 and Pys is not
symmetric. The second objection is'that even when the model holds; the
estimate of Zy and';z can be negative, and the estimate of co'can be -
greater than one, In this case A& cannot be interpreted as a difference
of two probabilit%é;. Perhaps we could use A anyway, but an invesFigaa
tor might prefer to use a more traditional index of inequality.

For the problem at hand, the index of iﬁéquality that suggests
itself is the entropy function. The entropy 6% a probability mass func-
tion pkgp, k=1, ..., r, is, -

@
“Insert Equation 21 here
wherg Epk=1. (In some instances, the logarithms in equation 21 are taken
to the base 10 or the base 2. See Kullback, 1959, p. 7.) The function H
provides a measure of the degree of uniformness of a distribution. That
fs; the larger is H, the more uniform is the distribution. The minimum
value of H occurs when p=1s %ts maximum value occurs when Py=.--P=1/r,

and it is Schur-concave (implying that -H is Schur-convex). See Marshal

: 244 -
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and B1kin (1979, chapter 13, section E). To measure the idealness of \\\\\

item, the inequality of Pps P3 and Py needs to be measured which

this case the maximum possible value of H.occurs when q1=(t-1)"1{
An additional reason for using the entropy function is given in the next
section of the paper. Brown (1965, section 3) also used the entr%py

E 4

function but in a slightly different fashion.

Empirical Checks on the Model

From equations 1-4 various_restrictions on the pi‘s are evident in
order’ for the model to hold. For instance, it requires having plzp23p3gp4.

This assumption can be tested using results reported by Robertson (1978).

It shqu]& be noted that when P1=Pp> the probability of having X12Xs

approaches .5 as N, the number of examinees, gets large. Thus, thére is

a reasonably hfgh probability Ehé;‘the usual estimate of the p;'s will

indicate that the‘model does not hold when the p;'s are approxfﬁéte]y

equal in value.- Of course, the hypothesis Po™P3=P4 can be tested, but

this does not give a direct measure of.how ideal an item is. The null,
hypothesis might be rejected, for example, Eut this does not directly in-
dicate’the extent to which Pps b3 and P4 are unequal. Another approach migﬁt ’
be to esfimate H, especially when the data suggests’the model might not

hold, and i% H is reasonably close to its maximum value, de¢ide that the:

item is ideal. We are not suggesting that hypothesis testing be discarded

" all together, the point is that the entropy function gives us some addi- ot

tional information about how close an item is to beiné ideal that is

otherwise unavailable. It might help to note that a similar situation ‘
. v

occurs in the analysis of variance (Hays, 1973, pp. 484-488).

-/
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Another requirement of the model is that p4_4, otherwise, g0>1. o

:. For similar reasons the model requires that P3Py £ 1/3 and py-p3 < %

L4

However, p,>p,>ps>p, implies that these additional inequalities are true.
* o, - ‘

T
¢

I1lustrations

. The rESults,given abovelare iltustrated with test scores for students
enrolled in an undergraduate tsycho]ogy course at the University of Southern
'California. Each item had t=5 distractors. There were four test forms,
and each form had forty{%temsz For simplicity, on1¥?4 items aye ana]yzed;
“and only one test form izfu§ec. A'more extensive analysis of the data,
together with some new theoretical results, will appear in a forthcomiﬁg
report. j . 7 ' - '
Table 2 gives the ébserred frequencies of the number ot eiamiaees
who g t the item correct on the ith attehptf(i=l .,5). For example, ' x/ﬁb
there were 42 examinees who were 1ncorrect on their f1rst attempt but '

. ) were correct on their second attempt of item 2

Insert Table 2 here

7 ) -

The first step when abplxiag the results given above is to test the
hypothesis that equation,12 holds. As’greyious]y mentioned, tFis is accom-.*
plished with resu]ts in' Robertson (1978) This was done for all 40 items

- on the teSt us1ng a 01 Yevet of 51gn1f1canc For items 1 and 2 in

- o
’

Table 2 app1y1ng Robertson's test is not necessary sinée the est1mate of

'thep S already satisfies equation 12. Item 3 is highly nons1gn1f1cant,

: 7 P
.. ‘but the null hypothesis is rejected for item 4. . . \/J

|«
For 21 of the 40 items, Robertson's test was unnecessary since the

XC:::Est1mate of the P; 's satlsf1ed equation 12. ‘For the rema1n1ng items, ,

S 7 SN
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r

@‘ .
= rl -
. . .
.ot .
) . \
B <
f

the null hypothes1s was reJected only once this was,, for item 4 in
¥ - ) } . .
‘ - ol
ine whether.a con- . .. _ . °

r

R Tab]e 2. .
%
“Next suppose’ & test constructor wants to dete
ventional scoring procegdure will yield reasonably accurate dec1s1ons about

‘(
whether an examinee has acquired the skills_ represented by items 1 2
te of P via equat1on 15/y1e1d§ a part1a1
ifems 1 and 2, the estimate df r is’

" An est1ma
Thus, the corre-

I'4
and 3 in Table 2.
solution to this prob]em. ’
(139-14)/168=.744 and (100-42)7168=.345 respectively

sponding estimates of P are .917 and .75.
, - As ﬂ%g item 3, estimating p3 and Pg under the dssumption that

equation 12 holds requires an application of the pool-adjacent-violators
¥ The result is,
SR

The estimate of ¢z is .202, and so the esti-

a]goritﬁﬁ’in Barlow et .al. {1972, pp. 13-18)
Note that using the.poo]-adjacent violators algorithm
e

.., P3Ps=(29+16)/(2(168))=.134
F. ~ mate of Pis .797. No
T yﬁéius the sare estimate of P as is obtained when,equation 15 js used
;and when "p; s estimated with x;/n. goweVerg‘hhen §I<x2,‘using Ps=x ;h
wtﬁl yield different results The reaéonris that the @gximun 1ikelihood
®of c, assum1ng equat1on 12, is =0 when x 1%p» and it is (x1 ;;)/N g
z=0, apd-the

-

.
otherW1se. ‘Cons1der, foreexample, item 4 in Table 2.
max1mum 11ke11hood estimate of Po» "assuming equation 12, is .369. Thus,

If, however, we use 5-=xi/N; tha estimate of

.
.
! ‘
. ‘ "
. .
’ v b -
" - ’ 1
* *
-

=

b " the estimate of P is .63
¢ . N " QJ .
P is .446. _ ; 7
. i } Sugpose the f1rst three items in Tab]e 2 constituted the whole test.
*
Gamma 1.c. ‘énother 1mportant pdai[ is thatvthe estimates.of P yield an estimate of vy,
the expected number of correct dec1s1ons for the n items on the test.r«
For the case
”*‘ W

£y

The est1m1§e is simply the sum of the estimated P values
Thus, when a conventional scoring

{

] " at hand s is estimated to be 2.46.
. 's' . , Y
o Traan

-

oy -
' -
- .
w [ ]

i)
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procedure is used to determine whetoer an examinee knows the eo;rect
response to an item, the expected number of correct decisions for the
,e,fi,tsi_tilm_ej_tems__i,n,NIablee,Z‘,,js estimat®d to be 2.46. & : -
If any of the Phya]ues‘Qs small, o%e possible way to improve the
item is tof%mprove the distractors,” For example, efforts m1ght be made
to 1mprove the least frequently chosen distractor. - g
To measure the effect1veness of the distracfors, the-entropy function )
is app11ed For item 1in Tab]e.Z, q1=.483, q2=.31, q3=.138 and q4=.069.
Substituting these values into equation 21 yields H=1.172. The ma x imum
possible value of H océprs when q.=.25 (i=1,2,3,4) in which case H=12386.
For item 2, H=.99 and for item 3 H=1.347. Thus, the test scores indicate’ "
that the item with the most effective distractors is jtem'3 foylowed By -
, iteﬁ,l. The distragto}s for item 2 are the least’effective having achieved
71.4% of the maximum possible entropy. o .
( It should be pointed out that the above est1mate of H for 1tem 3.

was not made under the assumption that equat1on 12-holds. If equat1on

*12 is assumed, and the poo]-adjacent-vio]ators a]gorithm is app]ied o~

.y

aniﬁth1s yields p1 405, p2 p3 p4 .1568 and ps— 125°in which case H=1,382. .

. . In either case, jtem 3 has the most effective d1stractors ' -

~

A MODEL FOR TYPE Ti?éUESSING
In-many instances a test cons1sts of items representing sk1lls that
are thought t?lbe most 1mportant Moreover there are situations where
the skills on a test are the only ones that are of interest to the test
‘constructor. However, in other_situations (see, e.g., Hambleton et al.,

197@) the items on a test are intended to be a representative sample of

-

- — e

248




nJ _ » - Solving Measurement Problems

L . - i ' (‘ A-17
) poo- .1

‘ some larger item domain. The goal is to use test results to make infer-

ences about what an examinee knows relative to the item pool. In either

»

: cage,the-rg§u1tsvin,gheprevious section are of.interest. This section
considers how an AUC. test might be used to-so]ve‘certain méasurement
prob]ems,ﬁhen generalizing results for gpsing]e examinee to an item domain.

i, T.c. For a specific examinee, let g'be the proportion of skills among a »

domain of skills that he/she has acquiréd. Further’suppose that each skill

7 ¢f< . is represented‘by a multiple-choice test item having t a]ternatiYes from

whigh to choose. Again for convenience,‘emphasﬁs is ‘given to the special

case t=4. let £ (i=0, ... , t-2) be the proportion qf items for which
the examinee does np} know and can eliminate i dis%ractors. Once i dis-

tractors arg eliminatet, the examinee is assumed to guess at random from

among those that remain. .Let ry be the probabi]it§‘of a correct on the

. ith attempt, Then Yor t=4, -

< ' Insert Equation 22 here

Insert Equation 23 here -

/-
Ly N
Insert Equation 24 here

- s * Insert Equation 25 here

= -
M .
.

1

<
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~N
. . If for a;'random sample of 'n items, ¥; is the number of items the examinee
is correct on the ith alternative chosen., An'unbiased estimate of the

. £;'s can'be derived just as unbiased estimates - z;'s were derived in -~
" the previous model. In particular, an unbiased estimate of ¢ is

'

) .
' v Insert Equation 26 here R

S :

: - N
Equation 26 is an estimate of true score that is corrected for an

examinee's par'tiaz information. Note that equation 26 contains the usual
correction for guessing formula score as a special. case.” .

N 3
B

The Optimal Linear Estimator of ¢

Let z be a random variable that is an unbiased estimate of the unknown

1‘ 1.c. parameter 6. Under squared error loss, Griffin and Krutchkoff (1971) show

A"
that the optimal linear estimator of ¢ <is

-

Insert Equation 27 here
Alpha, 1.c. '
Delta, 1.c. Where a—Var(a)/Var(z) and 6=(1-o)E(8). In mental test theory, equation
C 27 is knoys Kelley's hneaigresswn estimate of true score (Kelley,
1947, p. 409). The point made by Griffin and Krutchkoff is that if an
unbiased estimaté of an-examinee's.true score is used, equation:27 is
’optimal regardless of the shape of true score distribution. Wilcax (1978
. compares equation 2% to several other estimators assuming the binomial
§ ‘error mode]l holds but where observed scores are generated according to a
. two-term ap;;roximation to the compound binomial error model. The results

suggest that when simultaneously estimating the true score of several
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. examinees, the Griffin-Krutchkoff estimator should be used when an ensemble
squared error loss function is being used.” Furthermor?e',/ the results sug-

gest that Ke]l‘g_y'rsjjpgrirggrgﬁssjon estimate of £ be employed.

] It is assumed that the.',yi‘s have a multinomial distribution and that
observed test scores for N examinees are available. An estimate of E(g),

) Var(z) and Var(_yl-yz)fis needed to app]vy results in Gr:iffin and Krutchkoff
\ Qhere. the expectations defining these quantities are over the population

| of examinees.

Let

Insert Equation 28 here

. / s Insert Equation 29 here

where i=1, 2. Then

' -+
* Insert Equation -30 here

a . v

Insert Equation 31 here

*

Since ‘cov(yl, yzlpl, p2) = 12np1p2', it follows that

. Insert Equation 32 here

>




Solv1ng Measurement Problems
A-20

™

Thus, - % .

Insert Equation 33 here

«

- Insert Efuation 34 here

Letting y and v . be the value of Y3 and Vi respect1ve1y, for the jth

randomly samp]ed examinee, the above resu]ts suggest that E(g) be esti-

mated with

l's

« ) .
ot
’ =

=

Insert Equation 35 here

and Etgz) with

L4

Insert Equation 36“h‘<;1r~ers

%
3
3

- Thus, an estimate of Var(f) is

- : Insert Equation 37 here )b,

~
2

The variance of the ma}gina1 distribution ofjobgerved scorés-(yl-yz)}n
can be estimated in the usual manner, and so an estimate of the optimal
1inear‘est%mator of £ is obtained by subktituging the results in equation
27. Of courge, the results just given contain, as a‘special case, the

optimal linear estimator under the assumption guessing is at random.
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. ~Numerical I1lustration : ~

As a simple illustration, suppose we have five examinees with observed -

y values as shown in the first two rows of Table 3, where the te,s't, length

is n=10.

Insert Table 3 here

Hu,’ Tau, Then 6{;;.42, %.=.2, and s0 6,=.0236. The estimaté of var?((yl—yz)/f)

Sigma, 1.t. £ £
s .0687. Therefore, the estimate of « is a=.3435, and so the estiamte
. of the optimal Tinear estimator is
¥

»* N

Insert Equation 38 herq@
The value of z for the five examinees are given in thé last row of Table 2.
Before cont1nu1ng, some add1t1ona1 comments about the above results
are in order. First, the est1mate of var(&) can be negative in which case
&=¥ fs used. The same phenomenon occurs in the case considered by erff1n
. and Krutchkoff. Second, the optimal linear estimator of g déf;Qed above
does not assume fﬂ!‘model holds: It is the optimal linear estimator
of pllpz, but no insistence s made that P12Py- If the model holds,
1mp1y1ng that P12Pps equation 33 is no longer true, and so the condition

. of having an unbiased estimate of £, as is assumed by Griffin and Krutchkoff,

-l
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. is no 1onger satisfied. For further comments on this approach to estimation,
see Griffin and Krutchkoff (1971) and Wilcox (1978).

¥

- A Strong True Score Mode]

This section assumes that for any examinee, yliand Yo have .a multi-

nomial probability function given by - <

. Insert Equation 39 here

~ where, as_before, £=p1-Py and 0<g<l is assumed. Equation 39 can be justi-
‘fied under an item sampling model, or it mighf give a good approximation
to the joint probability function of y; and y,. It should be noted that -
" equation 39 implies that yq has a‘binomia1 probability function, and
. S0 when every examinee takes .the same n items, the-items have the sam'g‘“
level of difficulty (Lord and Novick, 1968, chapter 23). On theoretical
grounds, this implication of equation 34 is unjustifiable. However, for
certain measurement problems, it appears that this might not be a seripus
\ restriction. (Wilcox, 1977, 1978; Algina and Noe, 1978). éee also
Subkoviak (1978).
Strong true-score.modelsvéttempt to extend assumptions such as equa-
tion-39 to a population of examinees. The basic problem here is to find
a fanﬁlj?of distributions that approximates-g(g,pz), the joint density of
£ and Py- Once this is done, various measurement problems can be solved

(e.g., Lord, 1965; Huynh, 1976; Wilcox, 1977).




.

L
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Past experience with this type of problem (Keats and Lord, 1962;
Lord, 1965; Wilcox, 1979) suggests'approximating g(é,pz) with’a bivariate

Dirichlet function given by

Insert Equation 40 here

where TI' is the usual gamma function, v;>0 (1 1,2,3) are unknown parameters
and 0<é§p2<1 (Marshall and 0lkin, 1979, pp. 306-307 describe two othér
distributions to which the name "Dirichlet" is attached. Here, only
equation 40 is considered. )

To estimate the,vi, broceed as follows: first, observe that the

- marginal distribution of ¢ is beta w1th parameters v1 and v2+v3 (e.q.,

Wilks, 1962). It follows that s , N
Insert Equation 41 here

is the mean of & over the population-of examinees.

where, as before, uE

e

For similar reasons, - ‘ P

Bl

Insert‘Equation 42 here - —
where up is the mean of p,. It is also known (e.q., Wilcog; 1977) that

Insert Equation 43 here

. where

Insert Equation 44-here
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. Summarizing these resulte in matrix notation yields
- .
_ T - - 3
p .
Insert Equation 45 here -
- _ e ] -

As previously indicated, Mg and ‘%2 can be estimated, which yields an
estimate of s. An estimate of Py is N'I):yzj, angso equation 44 yieldé
‘an estimate of the vi's. ’

Mosimann (1962) applies the Dirichlet-multinomial mode’ to two real

i}

data sets, he discusses how to check the implications of the model, and
. he gives several other results that have practical value, and so these -

s

. issues are not discussed further. Since the Dirichlet-multinomial model

' is the multivariate analog of the beta-binomial model, additional insights

into the appropriateness of the model are available from Wilcox (1981).

,Tt;e point is that the Dirichlet-multinomial model can be applied to AU'C

scoring procedures ar;d so solve various measurement problems as pr:e,\gipt;sly
.

indicated. An advantage of the model is that it allows guessing to vary

- Bver the population of examinees.
7 An important point is that if the model is assumed to hold, and in
vparticuTar 0<t<1, this suggests estimating £ to be zero even when §<0.

In this case the‘estimates of E(£) and E(g?‘) are not justified for the

reasons given above, but they are still appropriate for the.reasons given

. . by Wilcox (1979).
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One point that deserves special mention is that a new formula score .

can be derived that corrects for partial information. The derivation is

- essentially the same as the derivat{on,of equation 4 in Wilcox (1979).

Thus, we merely note that

Insert Equation 46 here

where B is the usual beta function. Thus, once the vi's are estimated,

we only need Y1 to astimate &.

: K %
DISCUSSION ’

One objection to the assumption§ that were mdde is that the re-
sﬁ1ting model is too simple. For instance, it does not allow for the
possibility of“knowing and being incg;repti or the possibility of Aaying
misinformation. Brown and Burton (1979) describe a real situation where
the 1étter problem occurs. Frary (19%0) gives an interes?ing account of
how misinformation can affect various scoring procedures, and Wi1coxv"
(1980) indicates the seriousness of the'fbrmer problem when determining

the Tength of a criterion-referenced test. Although the present model

does not ‘correct these problens, empfﬁfcal checks on the appropriateness

‘of the model can be madé?’ It should be mentioned that models have been

proposed for handling the two errors just described (e.g., Duncan, 1974;

Macready and Dayton, 1977; Dayton and Macready, 1976). However, these

models require additional assumptions that might not be met. The Macready-

.Qayton model, for example, assumes éh;t equivalent items are available
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for measuring a particular skill. The assumpgion of equivalent item§ cﬁh
be checked using a goodness of fit test (Macready gnd Dayton, 1977), using
_a procedure described by Hartke (1978), and results repor?ed by’Baker

and Pubert (1977) might alsp be useful in-this endeavor.- (See, also,
’Wilcox, 1nApress, a.) Here it is assumed that erirical invesfigations
fail to support the existence of equivalenf‘items, or tha; it is decided

a priori that equivalent items do not exist. Finally, the Duncan model
correct; for misinformation, but it assumes guessing is at random. The
goa? here is to avoid this restriction, or to find Qays in which it can

-

be empirically checked. )

Another possible objection to the model is that it characterizes
examinees as belonging to one of two mutually exclusive classes,’ namely,
"knowing" and "not knowing." The relative merits of this approach are
discussed in a more general context by Reulecke (1977), Hilke et al.
'(1977), Scandura (1971, 1973), and Spada (1976).

In some situations, the scoring procedure for fype IT guessing might
be objectionable because it penalizes an gxaminee for having partial infor-
mation. That js,‘if an examinee Qants to maximize hisYher.score (the ”
estimate of £) the strategy would be to mininize y,. This could'Se done
by éhoosing an answer, and if it %s wrong, deliberately choosing another
response that is believed to be incorrect. In this case the examinee is
not behaving‘in the manner a;sumed, and so the model%is inappropriate.

One apﬁroach to this problem is to have an examinee always mark his/her
first and second choice without revealing which response is correct.
Letting ¥q be fhe number of times the examinee's first choice is correct,“

1ett1‘ng'y2 be the number of times the second choice is correct, ¢ is;again

estimated with (y;-y,)/n. Indeed, all of the previous results still .

A d
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. - hold. However, this might not eliminate the problem under discussion.
Suppose, for example, that an examinee can eliminate all but two of the
a1ternat1ves from cons1derat1on for every 1tem on the test If an exam-
inee' sittereto1ces correspond to these two alternatives, the expected
estimate of € is 0. However, -if an examinee's first choice is between

. the two alternatives that contains the correct response, end if the exam- ,
inee is deliberately incorrect on the second choice, the expected

estimate of ¢ is .5. One way to minimize this problem is to subject the

items toan analysis that attempts to ensure guessing is at random. It

was already indicated how this might be done. Another solution is to
apply the Dirichlet-multinomial model. If estimates of the vi's can be
made available, the information on the examinee's first choice, the value
of ¥y is al] that is needed in order to estimate &. Severa1 other strong -
. ) ture-score models are currently being investigated that m1ght be useful
o~ when addressing this prob’/? Another poss1b111ty is to check the assump-
tions of the mode], if they do not hold, simply score the test using
traditional techn1ques.
For practical purposes perhaps the problem just described will be
inconsequential; this remains to be seen, Also-riote that- this problem
- 1is irrelevant in terms of the results given Under Type I guessing.

In practice, the scoring rule proposed by Brown (1965) results in
scoring t-i‘boint;‘when the correct response is chosen on the ith attempt
of an item, where, as before,’t is the number of alternatives from whith
to choose (e.g., Frary, 1980). Thus, the sooner an examinee identifies -

the right answer, the higher will be his/her score. In some cases, however,

. . this scoring procedures also inadequate. First, it gives credit to an

examinee when a test constructor unintentionally produces ineffective
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. . *  distractors. ) Second, and perhaps mo;t 1mportant]g¥, it gwes a measure of
part1a1 information, but it does not te]] us what an examinee knows in
the sense of estimating £.” The same is trué of the other'scor1ng ‘progedures
cited by Frary (1980), theyscoring rule propo§;d by Coombs®et al. (1956),
as well as the subset selection rule proposed by Gibbons, 01kin and Sobel
(1977, 1975). No claim is)made that these procedures be abandoned, but as
argued by‘Morrison and Brockwéy (1979), estiﬁhting £ can SE imporﬁant.

Another point is,that'on1y two Pesponses to each item are needed in

order)fo estimate ¢ .for each examinee. The additional reSponses are
needed on]y for checking the app;Eprjateness ¢f the model, and 1n‘par~k

+ ticular, justifying (yl-yz)/n as an estimat? of 4. In some cases n will
‘be too small to accurately test the model. D rmining whether this is

{

the case can be accomplished with the statistical- techniques described

under TypewI guessing. C
Finally, it was sugéested éaat the Dirich]et—mu]%inomia{\distribu-w

tion be éonsidered when trying to find a strong true-score model that

" fits the data. It shoyid be stressed, however, that considerably more
experience with this distribution is needed before it is (outinelx appTied;
Wilcox (in press, b) got good results.with the distribution using real
data, but the ex'ent to which it gives a good fit to mentgl test data is // .
not known. An e§b1r1ca1 1nvés;1gat1on is currently gpderway in an attempt_‘f

© %o partially resolve this problem. Consideration will also be given to
several Gther strong true-score models. The results should be available

in the near future.

B N % ’ R . -
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%
EQUATIONS

Py= ¢ +zgo/8+5y/3+1,/2 [ 1]
PZ = ;0/4 + 1;1/3 + 1;2/2 [ 2]
P3=§0/4+C1/3 [3]

t-1 _ . >
P; J_E g5/ (t-3), [ 5]

] *

X, X, X

@ PP 2p)ep’e [ 6]
@] = N!/(xl!x2!x3!x4!), Xg = N-x1~x2—;<3, ps=1. [ 7]
g = (xp=x, )N ) . [ 8]
Ly = 4x4/N [ 9]
Ty = 3(xg-xg /N [10]
22 = 2(x2-x3)/N [1,1]
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. ' Py2Py>P3> Py- [12] "
P =g+ 35p/8 +25,/3 + ¢,/2 [13]
P =+ 358+ 28/3+ 2,2 [14]
. t
P=c+ I p; [15]
i=2
k k
I c:i> I b, kel, ..., n-1 {17]

k ='1-(1-P)/8_ [18]
B = 320 + 231 + 22 + (c0+c1+cz)(c+-§é-+fgl+;2-). [19].
b=P.. - P - [20]
H(pl,‘... , [?r) = ‘—):p;logepk ' [21] °
ry= g+ g4+ g;/; + ngz [ 22]
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ry = Eglh + £1/3 + £,/2

T'3 = 60/4 + 51/3

ry = §0/4
% = (.yl'.Yz)/n
§=az+ 35
vi = ¥i/n

_ yi yi"l
Wi T n-1

E(v;|pys Pp) = by

) _ 2
E(witpls p2) = P

E(YIYZIPI: pz) = n(n‘z)plpz '

E(V1'V2) = E(E)

J

E(wlwz-[zylyz/(n(n-z))])\E(g2>

»>
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[23]

- B [24]

[26]
[27]

[28]
[29]

[ 30]
[315
[35‘
[33]

- [34]

[25] -
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/

o= NL g (vq5-v,.) ! [35]

£ j=1 J 2] )

" a
N

~ = : "1 _ —1 _ -1 . N N
T N jzl w1j+w2j n (n-2) Zylijj ’ [36]
A2 - ~ _ ~* 2 )

£ ST, (ug) | [37]

. ( . rd .
¥ = .3835(y,-y,)/n + .276 . [38]
1772 .
y .o
n! (&) B2 (1-5-p,) Y172
fly;s o128, pp) = [39]
Y1y Hn-y;-y,)!
AN 30 AR S [40]

: gl p -§-p

r(vl)r(vz)r(v3) 2 2 -

-1 -

Vl(l-ug ‘)+VZ+V3 = 91 . . . [41]
v Va1, ™) + vy = 0 o [42]
S = Vy+ vy [43]

_ o \2 -2
s = w(l-ug)" 0" -1 N [44]
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-

.
“ “
. N -
— ——
»

-1 [~ 7] [~ 7]
oy 1 1] v, 0o \
-1
A1 l—np L]l vy =10 k [45]
0 1 Yilvel Led

I - AN
Eelyy) = [Fly B0vpovgivgl] [;l]

2 ' [46]

wEO B(w+v2, nfylfv3) B(yl—W+v1+1, N-yHEvo+va)
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. _ TABLE 1 ]

Four Possible Outcomes When an Examinee Attempts an Item

v

‘ Decision
' . Marginal
Latent State Knows Doesn't Know Probabilities
" Knows - I - -0 - z

. Doesn 't Know To/d + 5y/3 % ¢y/2 3gg/8 + 251/3 + 5y/2 | gt gyt

- ¢

i
-




T AT 1l PV Wil v S WA D

o

TABLE 2
)

Number of Examinees who are Correct on the

ith Attemptsof the Item

Attempt y
Item| 1 2 3 4 5

"1 139 14 9

2 100 42 17
3 68 34 16 ~ 29 21
4 31 93 20 15. 9-
/\/‘

{Fl“l“
A
/

[
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. TABLE 3 _ |
» Values of Yy ¥ and 'E with n=10 and°N=5
yl 5 7 6 9 2 N “
| vy, 3 1 2 o0 2.
¥ .3 .48 .41 .59 .28 -
‘. +
\ ™~
- . S
N <
r ¥
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Under an answer-until-correct scoring procedure, the entropy function .
can be used to measure the effectiveness of the distractors of a multiple- 7

choice.test item, This brief note indicates how a polarization test can

be used to determine whether the entropy is¥arge or small. Included as

[y

 a special—case is an exact test or whether guessing is at random.
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item which "imply that

1. INTRODUCTION
1

Consider a specific multiple-choice test item having k alternatives
frém.which to choose, only one of which is the.correct response. Suppose
that a randomly sampled examinee re;ponds to the item according to an
answer-until-correct scoring procedure. This means that the examinee
chooses alternatives until the correct response is identified. This is
usually accomp]isheﬁ by having the examinee erase a shield on an ansvier
sheet. The examinge knows immediately whether the correct response vas
chosen. If it was not, another shield is erased, and this continues
until the cbrrect response is ijdentified. ’wilcox (1981a) describes sev-
eral measurement problems that this scoring procedure can solve. They
include correcting fgr“guessiﬁg without assuming guessing is at random,
testing whether guessing is at random, measuring the effegtiveness of
distractors, and estimating the prqbabi1ity of correctly determining ,
whether an examinee knows the correct response when i;Efnventional scor-
ing procedure is usedai Thif last probability makes i#’possible to charac-
terize n-item tegts, afd a ré]évanﬁ‘statistical procedure has been Hgve]—
oped (Wilcox, in press). More recent}y the results in Wilcox (lééla) |

a g .

were extended to a strong true scorefodel that allows guessing to vary ..

\S&er the population of examinees but which does not assume true score

and,gueséing are independent (Wilcéx, 1981b).' . . \

Suppose an afiswer-amtil-correct scoring procédure is used, and let

. - -
"qi be the probability that a randomly selected examinee chgosgs gge correct

:respopse on %heligﬁ_atgempt aof the item. Wilcox (1981a) makes certain

assumptions about how examinees behave when attempting a mu1}ip]e~choi€e'

e

"‘*‘w - I
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This assumption was empirically checked with 620 examinees who took.three
tests during a semester for a tg;a] of 117 items. At the .01 level of
significance, it was found that all but 6 of the items satisfied this re-
striction {Wilcox, 1981b). , |

In Wilcox (1981a), it was proposed that the effectiveness of the

d1stractors be measured with
k-1

H(qla-“:Qk) = h]fl p]]n p] - o (2)

wherefpi=qi+1/(l-q1). Thiis is the entropy function which is also known as

. Shannon's measure of information or digersify. Wilcox‘(lagla)ﬁnotes that

if it is decided that an examinee knows the correct response if and ooly -
if the correct response is chosen on the first atfempt of the item }i.e.,

a conventional scoring procedure is useo) the distractors are the most

effective when q2=o3=...=qk. This corfésponds to random guess%ng, and
Weitzman (1976) calls such items "ideal." The entropy fuhction measures

how far away an item is from being ideal. Small values of H indicate that

) guessing'is not close to being“random, while large values of H mean the

item is close to being ideal. The largest possibfe value for H is 1n(k~i),
and 1ts sma]]est value is zero. '

For a random sample of n exam1nees, let x be the number who choose
ehe correct response on the ith try.. The max1mum 1ikelihood estimate of

H is $ , ‘ »

(3)




.

vhere the estimate is taﬁen to be In{k-1) when n=X, (cf. Gi]] & Joanes,
1979; Basharin, 1959; Hutcheson & Shenton, 1974).

The purpose of this note is to indicate how the'polarization test
recently pﬁbposéd by Alam and Mitra (IQSljphight be extended to make, in-
ferences about H. Interest is focused upon testing the hypothesis

HO: H<h ! ' . -
where h is a known constant. ‘An impértant special case is h=1n(k~l) wh%cha.
corresponds to testfng whether guessing. is at random. The appeal of the
procedure outlined here is that the exact distribution of a statistic
used by Alam and‘Mitra, which is described below, can be used to compare
H to h. This is ihportant because aéymptotic approximations of the distri-

bution of H tend to be unsatisfactory unless n is very large (Bowman, et al.,

1971). Comments by Alam and Mitra (1981) indirectly confirm this.

2. COMMENTS ON H, MAJORIZATION AND SCHUR FUNCTIONS

When making inferences about H, the natural procedure is to use A which
is given in equatiQn 3. However, the exact distribution of fi is rather com-
plex and cumbersome to work with (Bowman,® et al., “ Instead the

astatistic 4

ko ) '
T(X.) = I k«i . ) {4)
i=2 | t e . ‘
, ; ‘ ~ :
is*used. Note that 1F T(X) is d1v1ded hy (n- 1)2 we get an estimate of
k -
P> p2 which is known a; Simpson's mea§hre of d1vers1ty (Simpson, 1949).

j=1 ! I - *

|
|
|
. - |
‘I {
\ . .

|
|
|
4
;
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. "~ - At first glance it might appear that equation 4 is completely unjustified

when making inferences ahout H, but in terms oif majorization and Schur
< functions (which are defined below) this is not the case. The goal in this

" %
section is to briefly outline why this is true. Additional clarification

of this point will be made in a later section.

Consider any two vectors g=(al, cens ak) and g=(bl, veus bk)’ and

Tet ar112 302 2 N ) be the components of a written in descending

order. The.vector a is said to. majorize the vector b, written,a>"b, or

b<Ma, if
b<"a .o
J J b
- El a[‘i] iigl [-i]’ J—1$ Ters k-1 5
- . d L o L o
. - .

"II' | C & >
SN A IR '

2

_where b[i] s .defined in the same manner as a[i], For example,

AL, 0 0) > M0, 3,00, e, 0) > ™l s MK, L, 1K),

A real valued function ¢ is said to be Schur convex if a>™ implies
that ¢(a)>¢(b). If g>"‘g implies ¢(§)g¢(§_), the function ‘¢ is Schur-concave.

. In statistics there has been an increasing intexest in Sgh‘ur functions, and *.

\ Lo, \
- results in Alam and Mitra are formulated in terms of these concepts. For a

recent summary of various results on Schur functhns: see Marshall and 01kin

- .

(1979). - *
To motivate the use of equation 4, first we note that given Xy T is

a Schur convex function of (x2,‘..., xn), and H is Schur concave. This
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“elements equal to (m+1)'1. “Moreover, for any c such that O<cem™ ) -(m+1)” -1

means that in the sense of majdrization both T and H can be used to measure
the inequality of the P; 's, and 1ndeed'both measures are used. To put it
another way, comparing H to h is comparable to comparing p to some known
vector py, the comparison being made in terms of majorization. In fact,
this is exactly what Alam and Mitra (i981) do in their paper, but they
started with Po rather than h. As explained in more detail below, it is
possibld fo'start with h, and then formulate the problem in terms of com-
paring‘p to Pg- Once this is done, it is possiG?E to make use of the
results given by Alam and Mitra, but as will become evident, certain modi-
fications of their results will be needed.

1/
T 3. "‘DETERWING“#“p’“WHEﬁ h IS GIVEN —

Suppose h has been specified. This section outlihes how the‘%roblem

of comparing H to h might be reformulated in terms of comparing p to some

known vector Pg- First note that 1f h=1n(k-1), which is the maximum possib]é

value of H{p); comparing H to h is-the same as comparing p to
po=((k-1)7Y, L (k-1)7h). oy

Next let h be any real number betveen ¢ and In(k- l) Since H is

Schur concdve, there is an integer m such that _ "4 N

1]

py=(U/ms. . 1m0, 00 pp=(1/(m1) ..., 1/ (41),,0,...,0)

*

and H(p1)<h<H(p2) where p, has m elements equal to m

-1 and p, has m+l Ny

p3=(m'1—c, ...; m"l—c, ms, 0, .:., 0)>" Pos

3 ~

m
and P1> P3-




[

In addition, as c increases, P3 decreases in the sense of majorization.

Tﬁus, for any h, O<h<In(k-1), it is possible to find a vector Py such

“that H(py)=h.

For example, suppose an item has 4 alternatives. The ma ximum possibfe
value for the entropy of the distractors is ]n(3)=1.098é. Suppose we want
to detérmine whether the distractors shave ‘at ]east‘éo% of the maximum
possible eatropy. This correspénds to comparing H to h=.88. H(%,%,0)=.693,
and so we determine po,(%,%,m>mp0>m(1/3,1/3,1/3),such that H(p0)=.8. For
vectors of the form (2'1-c, 2'1-c, 2c), c¢ can be determined so that

1
v

H(%-£, %-c, 2c)=.8. The answer is approximately c=1/32, and so

i p0=(1 2, 15/32, 2/32). 1In summary, comparing H to .88 is, in the sense

of majorization, comparable to comparing p to p0=(15/32, 15732, 2/32).°

4. THE POLARIZATION TEST

\

’ N
The point of the previoug sectioﬁf;;/;;;; he problem of comparing H
to h; or comparing any measure of djvé sity %bjz known constant, caﬁ be
reformulated in %érms of comparing an E;kNan vector to a known vectqr in
tHe sense of majorizgf%ﬁﬁ. This can be done if the measure of diversity
is a Schur ?antionf This section considers how p might be compared to;

Pg once py is determined. V4
- . s .

-

The ﬁistribution of T

"The first step in devising a methdd of comparing p to p, is to derive
L3 -

the exact distribution of T. First, however, we will need the distribution

-~
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We note that expression (2.1) in Al4m and Mitra (1981) is supposed to be
‘the distribution of S(X) for k=2. However, the maximum possible value of

S is n2

, not n, and so the inequa]ities)ﬁn their expression (2.1) are
incorrect. Another problem is that‘;ﬁg’sma]lest possible value of S is
n2/2 if n is even,‘anﬁ (n-1)(n+1)/2 if n is odd; it is not n/2tas implied
by Alam and ﬁitra's equation (2.1). The same mistakes are made in expres- _
sion (é.é), and tgeir expression (2.2) contains two other typographical

~

errors. However, even if these corrections are made, the limits on the
(summation in their expression (2.1))are incorrect. As a simple example,
suppose n=3. Then Pr (S(X)55)=[g]qf(l—ql) + [i’]ql(l-ql)2 which does not
agree with their results. Accordingly, thé exact distribution of S(f)
is derived here.

First consider k=2; let cy=0 if y=n/2; otherwise Cy=1' Let a be
the smallest integer gréatér than or equal to n/ZL\Snd let b ge the . %a

largest integer less than or equal to z—n/é, where z is the largest inte-

ger such that z(n-z)gjnz-s)/Z. Then ¢

. atb -
- n __y\n-y n i n-yei_ Y
Pr(s(X)<s) .yfa Hqu{(l ql) +c¥{n_y]ql (1-q) ] (6)

4

Next consider k=3. Since the joint probability function of Xo and

X3 qiven xl'is binomial with parameters ql/(lﬂq3), qz/(l—q3) anq n-x;,

by Y1 a, Y[ q, "X n-x1 }{ 93 n-y-Xg( q, 1Y K
S LRI CH R T

1

where n-X; replaces n in the definition of €y a, b and z. Let -

Dk—l(s’ i}) represent the_right~haﬁd §ide of this last equality where

- L 285
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Dk-l(s’ xq)=1 if séjn-xl?z. If n-x; is’even, Dk-l(s’ x;) equals zero if
' s<(n-x1)2/2, and if n is odd it is zero if s<(n-xl~1)(n-xl+l)/2. It follows
that

n . ) . . .
Pr(s(X)ss) = & D _,(s,x,) {;‘( ]ql"l (1-q,)"1 ()
x1=0 1 _

For k>3,,the distribution of S(X) can be obtained recursively in the same

manner.

- f

Having‘estab1ished the distribution of S(X), it is now possible to

test the hypothesis H>h which,via majorization, is comparable to testing
. ;

2<m20 . V i /’
Let Bk(s;ql,...,qk,n)=Pr(S(X)j§). In terms of the X;'s, the decision

*

rule is to reject HO if

K N
P z x$>t.
i=2
e :
where t is to be determined. From equation 7

k .
2 .
Pr{.zz Xi<tlxl] =B, ; (Ef Pys +ovs Pppo n—xl) (8)
1= . ° “
where, as before, pi=qi+1/(1—q1). g .

Since undgﬁVZhe null hypothesis P=Pg > equation 8 can be evaluated,
i
and so for any observed X1 the probability of a type I error can be

determined for any t.

An I1lustration

As a simple illustration; suppose k=3 and it is decided to test

«H H>.5.

0:
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From section 3, p, is approximately (.8, .2) whi%h, in the sense of.

H

majorization, is the same as (.2, .8). Thus, in terms of. the polarization

fest, / ) ' . . .
p < m (.8, .25. »
1) § M
Suppose n=100 examinees are randomly sampled and that x1=75, x2=21

3
and x3=4 are observed. Then .22 X$=457~ Setting p=(.8, .2), equation 8
'I = >

‘yields the value of Pr(T(X{54251x1=75) which in turn gives the value of

Pr(T(X)>425|xl=75). Using the tables in Pearson (1968), the latter value

was found to be .4206, and so the observed.x's are reasonably consistent

- with the null hypothesis. If instead x5=24, and x,=1, Pr(T(X)>577]x4=75)=.023,

o

and so the results would be significant at the .05 level.

-~

-~ An optimal property of the test. A desirable property of any hypo-

thesis testing procedure i§ that as the unknown parameters move away..from -
the null hypothesis, the power of the tgst increases.> Here this méahs
that.if p” and p°~ are any two vectors such that p’>m p”>m Pg» We want the .
power of the test p<m Py to be larger at p=p~ than it is at p=p".' That
this property holds follows immediately from a theorem in Marshal]anddlkin
(1979, p. 391). Thus, we have an additional justifiction for using the
polariz;tion test as it is outlined above.

he ‘ . -

SUMMARY

« i . : 4
In summary, the paper describes how hypotheses about the effectiveness

of the distractors'of multiple choice test items might be tested. ﬁncluded

as a special case is an exact test for random guéssing that can be used in -

»
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corfj‘unctmn with an answer-untﬂ-correct scoring procédure. This s in
>

contrast to the asymptotic test for random gueseing (whlch dods.not use o v

an(“answer‘-untﬂ correct scomng rule) that was proposed b:}w/e,tzman (1970).

Another point, is.that it is not being recommended th an item be
”modified‘if Hy s r;;%ted. Wilcox (1981a) describes how the accuracy ‘of

a test item can be estimated. If the accuracy is high, tb.ere may be htt]\/

b

The freason is that any improvements in the distractors might &ie]d a
negligible increase in item accuracy However, if i
.or small, and if H0 is rejected, Mratmn i be given-Xo impm.v'ihg

the di stractors
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